๐Ÿš€ [SAS] ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ ํšจ๊ณผ์„ฑ ๋ถ„์„ ๋ฐ ROI ์‚ฐ์ถœ ๐Ÿš€

์ฝ˜ํ…์ธ  ๋Œ€ํ‘œ ์ด๋ฏธ์ง€ - ๐Ÿš€ [SAS] ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ ํšจ๊ณผ์„ฑ ๋ถ„์„ ๋ฐ ROI ์‚ฐ์ถœ ๐Ÿš€

 

 

๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์˜ ์„ฑ๊ณต ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๊ณ  ํˆฌ์ž ๋Œ€๋น„ ์ˆ˜์ต๋ฅ (ROI)์„ ์ •ํ™•ํžˆ ์ธก์ •ํ•˜๋Š” ๊ฒƒ์€ ํ˜„๋Œ€ ๋น„์ฆˆ๋‹ˆ์Šค ํ™˜๊ฒฝ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ๊ณผ์ œ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด SAS(Statistical Analysis System)์™€ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ๋ถ„์„ ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•˜๋ฉด, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์ •ํ™•ํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๊ธ€์—์„œ๋Š” SAS๋ฅผ ํ™œ์šฉํ•œ ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ ํšจ๊ณผ์„ฑ ๋ถ„์„๊ณผ ROI ์‚ฐ์ถœ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์ƒ์„ธํžˆ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

ย 

๋งˆ์ผ€ํŒ… ์ „๋ฌธ๊ฐ€๋“ค์€ ํ•ญ์ƒ ์ž์‹ ์˜ ์บ ํŽ˜์ธ์ด ์–ผ๋งˆ๋‚˜ ํšจ๊ณผ์ ์ธ์ง€, ๊ทธ๋ฆฌ๊ณ  ํˆฌ์žํ•œ ๋น„์šฉ ๋Œ€๋น„ ์–ด๋Š ์ •๋„์˜ ์ˆ˜์ต์„ ์ฐฝ์ถœํ–ˆ๋Š”์ง€ ์•Œ๊ณ  ์‹ถ์–ด ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํ•œ ํ˜ธ๊ธฐ์‹ฌ์ด ์•„๋‹Œ, ํ–ฅํ›„ ๋งˆ์ผ€ํŒ… ์ „๋žต ์ˆ˜๋ฆฝ๊ณผ ์˜ˆ์‚ฐ ํ• ๋‹น์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ค‘์š”ํ•œ ์ •๋ณด์ž…๋‹ˆ๋‹ค. SAS๋ฅผ ํ™œ์šฉํ•˜๋ฉด ์ด๋Ÿฌํ•œ ๋ณต์žกํ•œ ๋ถ„์„ ์ž‘์—…์„ ๋ณด๋‹ค ์‰ฝ๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ย 

์žฌ๋Šฅ๋„ท๊ณผ ๊ฐ™์€ ํ”Œ๋žซํผ์—์„œ๋„ ๋งˆ์ผ€ํŒ… ํšจ๊ณผ์„ฑ ๋ถ„์„์€ ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ์žฌ๋Šฅ์„ ๊ฑฐ๋ž˜ํ•˜๋Š” ํ”Œ๋žซํผ์˜ ํŠน์„ฑ์ƒ, ๊ฐ ์บ ํŽ˜์ธ์ด ์–ด๋–ค ์‚ฌ์šฉ์ž ๊ทธ๋ฃน์—๊ฒŒ ํšจ๊ณผ์ ์ด์—ˆ๋Š”์ง€, ์–ด๋–ค ์ฑ„๋„์„ ํ†ตํ•ด ๊ฐ€์žฅ ๋†’์€ ROI๋ฅผ ๋‹ฌ์„ฑํ–ˆ๋Š”์ง€ ๋“ฑ์„ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด ์„ฑ๊ณต์˜ ์—ด์‡ ๊ฐ€ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ“Š SAS๋ฅผ ํ™œ์šฉํ•œ ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ ํšจ๊ณผ์„ฑ ๋ถ„์„์˜ ๊ธฐ์ดˆ ๐Ÿ“Š

SAS๋Š” ๊ฐ•๋ ฅํ•œ ํ†ต๊ณ„ ๋ถ„์„ ๋„๊ตฌ๋กœ, ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์˜ ํšจ๊ณผ์„ฑ์„ ๋‹ค๊ฐ๋„๋กœ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํšจ๊ณผ์„ฑ ๋ถ„์„์˜ ๊ธฐ๋ณธ์ ์ธ ๋‹จ๊ณ„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

  1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์ •์ œ: ์บ ํŽ˜์ธ ๊ด€๋ จ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  ์ •์ œํ•ฉ๋‹ˆ๋‹ค.
  2. ๊ธฐ์ˆ  ํ†ต๊ณ„ ๋ถ„์„: ๊ธฐ๋ณธ์ ์ธ ํ†ต๊ณ„๋Ÿ‰์„ ๊ณ„์‚ฐํ•˜์—ฌ ์ „๋ฐ˜์ ์ธ ์บ ํŽ˜์ธ ์„ฑ๊ณผ๋ฅผ ํŒŒ์•…ํ•ฉ๋‹ˆ๋‹ค.
  3. ์„ธ๊ทธ๋จผํŠธ ๋ถ„์„: ๊ณ ๊ฐ ๊ทธ๋ฃน๋ณ„๋กœ ์บ ํŽ˜์ธ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.
  4. ์‹œ๊ณ„์—ด ๋ถ„์„: ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์บ ํŽ˜์ธ ํšจ๊ณผ์˜ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.
  5. ์ธ๊ณผ๊ด€๊ณ„ ๋ถ„์„: ์บ ํŽ˜์ธ๊ณผ ์„ฑ๊ณผ ์ง€ํ‘œ ๊ฐ„์˜ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.

ย 

์ด์ œ ๊ฐ ๋‹จ๊ณ„๋ณ„๋กœ SAS๋ฅผ ํ™œ์šฉํ•œ ๊ตฌ์ฒด์ ์ธ ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์ •์ œ ๐Ÿงน

ํšจ๊ณผ์ ์ธ ๋ถ„์„์„ ์œ„ํ•ด์„œ๋Š” ๋จผ์ € ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. SAS๋Š” ๋‹ค์–‘ํ•œ ์†Œ์Šค๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  ์ •์ œํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.


/* ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ */
PROC IMPORT DATAFILE="campaign_data.csv"
    OUT=WORK.campaign
    DBMS=CSV
    REPLACE;
RUN;

/* ๋ฐ์ดํ„ฐ ์ •์ œ */
DATA clean_campaign;
    SET WORK.campaign;
    IF missing(customer_id) THEN DELETE;
    IF age < 0 OR age > 120 THEN DELETE;
    IF spend < 0 THEN spend = 0;
RUN;

์œ„ ์ฝ”๋“œ๋Š” CSV ํŒŒ์ผ์—์„œ ์บ ํŽ˜์ธ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜จ ํ›„, ๊ฒฐ์ธก์น˜์™€ ์ด์ƒ์น˜๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ๊ฐ„๋‹จํ•œ ์ •์ œ ๊ณผ์ •์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

2. ๊ธฐ์ˆ  ํ†ต๊ณ„ ๋ถ„์„ ๐Ÿ“ˆ

๊ธฐ์ˆ  ํ†ต๊ณ„๋Š” ๋ฐ์ดํ„ฐ์˜ ์ „๋ฐ˜์ ์ธ ํŠน์„ฑ์„ ํŒŒ์•…ํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค๋‹ˆ๋‹ค. SAS์˜ PROC MEANS๋‚˜ PROC UNIVARIATE ํ”„๋กœ์‹œ์ €๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‰ฝ๊ฒŒ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ๊ธฐ์ˆ  ํ†ต๊ณ„ ๋ถ„์„ */
PROC MEANS DATA=clean_campaign MEAN MEDIAN STD MIN MAX;
    VAR age spend conversion_rate;
RUN;

PROC UNIVARIATE DATA=clean_campaign;
    VAR spend;
    HISTOGRAM spend;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ณ ๊ฐ ๋‚˜์ด, ์ง€์ถœ์•ก, ์ „ํ™˜์œจ์˜ ํ‰๊ท , ์ค‘์•™๊ฐ’, ํ‘œ์ค€ํŽธ์ฐจ, ์ตœ์†Œ๊ฐ’, ์ตœ๋Œ€๊ฐ’์„ ๊ณ„์‚ฐํ•˜๊ณ , ์ง€์ถœ์•ก์˜ ๋ถ„ํฌ๋ฅผ ํžˆ์Šคํ† ๊ทธ๋žจ์œผ๋กœ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.

3. ์„ธ๊ทธ๋จผํŠธ ๋ถ„์„ ๐Ÿ‘ฅ

๊ณ ๊ฐ์„ ๋‹ค์–‘ํ•œ ๊ธฐ์ค€์œผ๋กœ ์„ธ๊ทธ๋จผํŠธํ™”ํ•˜์—ฌ ๊ฐ ๊ทธ๋ฃน๋ณ„ ์บ ํŽ˜์ธ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์–ด๋–ค ๊ณ ๊ฐ ๊ทธ๋ฃน์—๊ฒŒ ์บ ํŽ˜์ธ์ด ๊ฐ€์žฅ ํšจ๊ณผ์ ์ด์—ˆ๋Š”์ง€ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ์—ฐ๋ น๋Œ€๋ณ„ ์„ธ๊ทธ๋จผํŠธ ๋ถ„์„ */
PROC SQL;
    CREATE TABLE age_segment AS
    SELECT 
        CASE 
            WHEN age < 30 THEN 'Young'
            WHEN age BETWEEN 30 AND 50 THEN 'Middle'
            ELSE 'Senior'
        END AS age_group,
        AVG(spend) AS avg_spend,
        AVG(conversion_rate) AS avg_conversion
    FROM clean_campaign
    GROUP BY CALCULATED age_group;
QUIT;

PROC SGPLOT DATA=age_segment;
    VBAR age_group / RESPONSE=avg_spend;
    VLINE age_group / RESPONSE=avg_conversion Y2AXIS;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ณ ๊ฐ์„ ์—ฐ๋ น๋Œ€๋ณ„๋กœ ์„ธ๊ทธ๋จผํŠธํ™”ํ•˜๊ณ , ๊ฐ ๊ทธ๋ฃน์˜ ํ‰๊ท  ์ง€์ถœ์•ก๊ณผ ์ „ํ™˜์œจ์„ ๊ณ„์‚ฐํ•œ ํ›„ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.

4. ์‹œ๊ณ„์—ด ๋ถ„์„ โณ

์บ ํŽ˜์ธ ํšจ๊ณผ์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. SAS์˜ ์‹œ๊ณ„์—ด ๋ถ„์„ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•˜์—ฌ ํŠธ๋ Œ๋“œ์™€ ๊ณ„์ ˆ์„ฑ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ์‹œ๊ณ„์—ด ๋ถ„์„ */
PROC TIMESERIES DATA=clean_campaign OUT=ts_result;
    ID date INTERVAL=DAY;
    VAR spend conversion_rate;
RUN;

PROC SGPLOT DATA=ts_result;
    SERIES X=date Y=spend;
    SERIES X=date Y=conversion_rate / Y2AXIS;
RUN;

์ด ์ฝ”๋“œ๋Š” ์ผ๋ณ„ ์ง€์ถœ์•ก๊ณผ ์ „ํ™˜์œจ์˜ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ด๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.

5. ์ธ๊ณผ๊ด€๊ณ„ ๋ถ„์„ ๐Ÿ”—

์บ ํŽ˜์ธ ํ™œ๋™๊ณผ ์„ฑ๊ณผ ์ง€ํ‘œ ๊ฐ„์˜ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ํšŒ๊ท€ ๋ถ„์„์ด๋‚˜ ๋” ๋ณต์žกํ•œ ํ†ต๊ณ„ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ํšŒ๊ท€ ๋ถ„์„ */
PROC REG DATA=clean_campaign;
    MODEL conversion_rate = spend age;
RUN;

์ด ์ฝ”๋“œ๋Š” ์ง€์ถœ์•ก๊ณผ ๋‚˜์ด๊ฐ€ ์ „ํ™˜์œจ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š” ๊ฐ„๋‹จํ•œ ํšŒ๊ท€ ๋ชจ๋ธ์„ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.

ย 

์ด๋Ÿฌํ•œ ๊ธฐ๋ณธ์ ์ธ ๋ถ„์„ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์น˜๋ฉด, ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์˜ ์ „๋ฐ˜์ ์ธ ํšจ๊ณผ์„ฑ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ง„์ •ํ•œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋น„์ฆˆ๋‹ˆ์Šค ์ปจํ…์ŠคํŠธ์—์„œ ํ•ด์„ํ•˜๊ณ , ์‹ค์ œ ์˜์‚ฌ๊ฒฐ์ •์— ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ’ฐ SAS๋ฅผ ํ™œ์šฉํ•œ ROI ์‚ฐ์ถœ ๋ฐฉ๋ฒ•๋ก  ๐Ÿ’ฐ

ROI(Return on Investment)๋Š” ํˆฌ์ž ๋Œ€๋น„ ์ˆ˜์ต๋ฅ ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ค‘์š”ํ•œ ์ง€ํ‘œ์ž…๋‹ˆ๋‹ค. ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์˜ ROI๋ฅผ ์ •ํ™•ํžˆ ์‚ฐ์ถœํ•˜๋Š” ๊ฒƒ์€ ํ–ฅํ›„ ๋งˆ์ผ€ํŒ… ์ „๋žต ์ˆ˜๋ฆฝ์— ํฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. SAS๋ฅผ ํ™œ์šฉํ•˜์—ฌ ROI๋ฅผ ์‚ฐ์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

1. ROI ๊ธฐ๋ณธ ๊ณต์‹ ๐Ÿ“

ROI์˜ ๊ธฐ๋ณธ ๊ณต์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

ROI = (์ˆœ์ด์ต - ํˆฌ์ž๋น„์šฉ) / ํˆฌ์ž๋น„์šฉ * 100%

๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์˜ ๊ฒฝ์šฐ, ์ด ๊ณต์‹์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ•ด์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

  • ์ˆœ์ด์ต: ์บ ํŽ˜์ธ์œผ๋กœ ์ธํ•œ ์ถ”๊ฐ€ ๋งค์ถœ - ์บ ํŽ˜์ธ ๋น„์šฉ
  • ํˆฌ์ž๋น„์šฉ: ์บ ํŽ˜์ธ์— ํˆฌ์žํ•œ ์ด ๋น„์šฉ

2. ๋ฐ์ดํ„ฐ ์ค€๋น„ ๐Ÿ—‚๏ธ

ROI ๊ณ„์‚ฐ์„ ์œ„ํ•ด ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ค€๋น„ํ•ฉ๋‹ˆ๋‹ค. ์ฃผ์š” ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

  • ์บ ํŽ˜์ธ ๋น„์šฉ
  • ์บ ํŽ˜์ธ์œผ๋กœ ์ธํ•œ ๋งค์ถœ
  • ๊ธฐ์กด ๋งค์ถœ (์บ ํŽ˜์ธ ์ด์ „)
  • ์บ ํŽ˜์ธ ๊ธฐ๊ฐ„

/* ROI ๊ณ„์‚ฐ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์ค€๋น„ */
DATA campaign_roi;
    SET clean_campaign;
    campaign_cost = 10000;  /* ์˜ˆ์‹œ ์บ ํŽ˜์ธ ๋น„์šฉ */
    revenue_increase = revenue - baseline_revenue;
    net_profit = revenue_increase - campaign_cost;
    roi = (net_profit / campaign_cost) * 100;
RUN;

3. ROI ๊ณ„์‚ฐ ๋ฐ ๋ถ„์„ ๐Ÿงฎ

์ค€๋น„๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ROI๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.


/* ROI ๊ณ„์‚ฐ ๋ฐ ๋ถ„์„ */
PROC MEANS DATA=campaign_roi MEAN MEDIAN MIN MAX;
    VAR roi;
RUN;

PROC SGPLOT DATA=campaign_roi;
    HISTOGRAM roi;
    DENSITY roi / TYPE=KERNEL;
RUN;

์ด ์ฝ”๋“œ๋Š” ROI์˜ ํ‰๊ท , ์ค‘์•™๊ฐ’, ์ตœ์†Œ๊ฐ’, ์ตœ๋Œ€๊ฐ’์„ ๊ณ„์‚ฐํ•˜๊ณ , ROI ๋ถ„ํฌ๋ฅผ ํžˆ์Šคํ† ๊ทธ๋žจ๊ณผ ์ปค๋„ ๋ฐ€๋„ ์ถ”์ •์œผ๋กœ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.

4. ์„ธ๊ทธ๋จผํŠธ๋ณ„ ROI ๋ถ„์„ ๐Ÿ‘ฅ๐Ÿ’ฐ

๊ณ ๊ฐ ์„ธ๊ทธ๋จผํŠธ๋ณ„๋กœ ROI๋ฅผ ๋ถ„์„ํ•˜๋ฉด ์–ด๋–ค ๊ทธ๋ฃน์—์„œ ์บ ํŽ˜์ธ์ด ๊ฐ€์žฅ ํšจ๊ณผ์ ์ด์—ˆ๋Š”์ง€ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ์„ธ๊ทธ๋จผํŠธ๋ณ„ ROI ๋ถ„์„ */
PROC SQL;
    CREATE TABLE segment_roi AS
    SELECT 
        customer_segment,
        AVG(roi) AS avg_roi,
        MEDIAN(roi) AS median_roi
    FROM campaign_roi
    GROUP BY customer_segment;
QUIT;

PROC SGPLOT DATA=segment_roi;
    VBAR customer_segment / RESPONSE=avg_roi;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํŠธ๋ณ„ ํ‰๊ท  ๋ฐ ์ค‘์•™ ROI๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ์ด๋ฅผ ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„๋กœ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.

5. ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ROI ๋ณ€ํ™” ๋ถ„์„ ๐Ÿ“…

์บ ํŽ˜์ธ ๊ธฐ๊ฐ„ ๋™์•ˆ ROI๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”ํ–ˆ๋Š”์ง€ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.


/* ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ROI ๋ณ€ํ™” ๋ถ„์„ */
PROC TIMESERIES DATA=campaign_roi OUT=roi_time;
    ID date INTERVAL=DAY;
    VAR roi;
RUN;

PROC SGPLOT DATA=roi_time;
    SERIES X=date Y=roi;
    LOESS X=date Y=roi / LINEATTRS=(COLOR=red);
RUN;

์ด ์ฝ”๋“œ๋Š” ์ผ๋ณ„ ROI์˜ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ด๋ฅผ ์„  ๊ทธ๋ž˜ํ”„๋กœ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ถ”๊ฐ€๋กœ LOESS ํ‰ํ™œํ™”๋ฅผ ์ ์šฉํ•˜์—ฌ ์ „๋ฐ˜์ ์ธ ํŠธ๋ Œ๋“œ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

6. ROI ์˜ˆ์ธก ๋ชจ๋ธ ๊ตฌ์ถ• ๐Ÿ”ฎ

๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ฏธ๋ž˜์˜ ROI๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ํ–ฅํ›„ ์บ ํŽ˜์ธ ๊ณ„ํš ์ˆ˜๋ฆฝ์— ๋งค์šฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.


/* ROI ์˜ˆ์ธก ๋ชจ๋ธ */
PROC REG DATA=campaign_roi;
    MODEL roi = campaign_cost revenue_increase;
    OUTPUT OUT=roi_predict P=predicted_roi;
RUN;

PROC SGPLOT DATA=roi_predict;
    SCATTER X=roi Y=predicted_roi;
    REG X=roi Y=predicted_roi;
RUN;

์ด ์ฝ”๋“œ๋Š” ์บ ํŽ˜์ธ ๋น„์šฉ๊ณผ ๋งค์ถœ ์ฆ๊ฐ€๋ฅผ ๋…๋ฆฝ ๋ณ€์ˆ˜๋กœ ํ•˜์—ฌ ROI๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฐ„๋‹จํ•œ ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•ฉ๋‹ˆ๋‹ค. ์‹ค์ œ ROI์™€ ์˜ˆ์ธก ROI์˜ ์‚ฐ์ ๋„๋ฅผ ๊ทธ๋ ค ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์‹œ๊ฐ์ ์œผ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

7. ROI ์ตœ์ ํ™” ์ „๋žต ์ˆ˜๋ฆฝ ๐ŸŽฏ

๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ROI๋ฅผ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ „๋žต์„ ์ˆ˜๋ฆฝํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด:

  • ๊ฐ€์žฅ ๋†’์€ ROI๋ฅผ ๋ณด์ด๋Š” ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํŠธ์— ๋” ๋งŽ์€ ๋งˆ์ผ€ํŒ… ์˜ˆ์‚ฐ ํ• ๋‹น
  • ROI๊ฐ€ ๋‚ฎ์€ ์ฑ„๋„์ด๋‚˜ ์บ ํŽ˜์ธ ์š”์†Œ ๊ฐœ์„  ๋˜๋Š” ์ œ๊ฑฐ
  • ์‹œ๊ฐ„๋Œ€๋ณ„ ROI ๋ณ€ํ™”๋ฅผ ๊ณ ๋ คํ•œ ์บ ํŽ˜์ธ ํƒ€์ด๋ฐ ์ตœ์ ํ™”

์ด๋Ÿฌํ•œ ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜๊ณ  ์‹คํ–‰ํ•œ ํ›„, ๋‹ค์‹œ SAS๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ทธ ํšจ๊ณผ๋ฅผ ์ธก์ •ํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ์ˆœํ™˜์ ์ธ ํ”„๋กœ์„ธ์Šค๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

ย 

SAS๋ฅผ ํ™œ์šฉํ•œ ROI ์‚ฐ์ถœ ๋ฐ ๋ถ„์„์€ ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์˜ ์„ฑ๊ณผ๋ฅผ ์ •ํ™•ํžˆ ์ธก์ •ํ•˜๊ณ , ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋ฐ ํฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. ์žฌ๋Šฅ๋„ท๊ณผ ๊ฐ™์€ ํ”Œ๋žซํผ์—์„œ๋„ ์ด๋Ÿฌํ•œ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•˜์—ฌ ๊ฐ ๋งˆ์ผ€ํŒ… ํ™œ๋™์˜ ํšจ๊ณผ์„ฑ์„ ์ •ํ™•ํžˆ ์ธก์ •ํ•˜๊ณ , ์ง€์†์ ์œผ๋กœ ๊ฐœ์„ ํ•ด ๋‚˜๊ฐˆ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๐Ÿ” SAS๋ฅผ ํ™œ์šฉํ•œ ๊ณ ๊ธ‰ ๋งˆ์ผ€ํŒ… ๋ถ„์„ ๊ธฐ๋ฒ• ๐Ÿ”

๊ธฐ๋ณธ์ ์ธ ํšจ๊ณผ์„ฑ ๋ถ„์„๊ณผ ROI ์‚ฐ์ถœ์„ ๋„˜์–ด, SAS๋Š” ๋”์šฑ ์‹ฌ๋„ ์žˆ๋Š” ๋งˆ์ผ€ํŒ… ๋ถ„์„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ๊ธ‰ ๋ถ„์„ ๊ธฐ๋ฒ•๋“ค์€ ๋งˆ์ผ€ํŒ… ์ „๋žต์„ ํ•œ ๋‹จ๊ณ„ ๋” ๋ฐœ์ „์‹œํ‚ค๋Š” ๋ฐ ํฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.

1. ๊ณ ๊ฐ ์ƒ์•  ๊ฐ€์น˜(CLV) ๋ถ„์„ ๐Ÿ‘ค๐Ÿ’Ž

๊ณ ๊ฐ ์ƒ์•  ๊ฐ€์น˜(Customer Lifetime Value, CLV)๋Š” ๊ณ ๊ฐ์ด ๊ธฐ์—…๊ณผ ๊ด€๊ณ„๋ฅผ ์œ ์ง€ํ•˜๋Š” ๋™์•ˆ ์ฐฝ์ถœํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜๋Š” ์ด ๊ฐ€์น˜๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. CLV ๋ถ„์„์€ ์žฅ๊ธฐ์ ์ธ ๋งˆ์ผ€ํŒ… ์ „๋žต ์ˆ˜๋ฆฝ์— ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.


/* CLV ๊ณ„์‚ฐ */
DATA clv_data;
    SET clean_campaign;
    retention_rate = 0.8;  /* ์˜ˆ์‹œ ๊ณ ๊ฐ ์œ ์ง€์œจ */
    discount_rate = 0.1;   /* ์˜ˆ์‹œ ํ• ์ธ์œจ */
    time_horizon = 5;      /* ์˜ˆ์‹œ ์‹œ๊ฐ„ ๋ฒ”์œ„ (๋…„) */
    
    clv = (annual_revenue * retention_rate * (1 - POW(1 + discount_rate, -time_horizon))) / discount_rate;
RUN;

PROC MEANS DATA=clv_data MEAN MEDIAN MIN MAX;
    VAR clv;
RUN;

PROC SGPLOT DATA=clv_data;
    HISTOGRAM clv;
    DENSITY clv / TYPE=KERNEL;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ฐ„๋‹จํ•œ CLV ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๊ณ , ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ ๋ฐ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.

2. ๋งˆ์ผ€ํŒ… ๋ฏน์Šค ๋ชจ๋ธ๋ง ๐ŸŽญ

๋งˆ์ผ€ํŒ… ๋ฏน์Šค ๋ชจ๋ธ๋ง์€ ๋‹ค์–‘ํ•œ ๋งˆ์ผ€ํŒ… ํ™œ๋™์ด ๋งค์ถœ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. SAS์˜ ํšŒ๊ท€ ๋ถ„์„ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•˜์—ฌ ์ด๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ๋งˆ์ผ€ํŒ… ๋ฏน์Šค ๋ชจ๋ธ๋ง */
PROC REG DATA=marketing_mix;
    MODEL sales = tv_ad print_ad social_media_ad price promotion;
    OUTPUT OUT=mix_output P=predicted_sales;
RUN;

PROC SGPLOT DATA=mix_output;
    SCATTER X=sales Y=predicted_sales;
    REG X=sales Y=predicted_sales;
RUN;

์ด ์ฝ”๋“œ๋Š” TV ๊ด‘๊ณ , ์ธ์‡„ ๊ด‘๊ณ , ์†Œ์…œ ๋ฏธ๋””์–ด ๊ด‘๊ณ , ๊ฐ€๊ฒฉ, ํ”„๋กœ๋ชจ์…˜์ด ๋งค์ถœ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.

3. ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํ…Œ์ด์…˜ ๐Ÿ‘ฅ๐Ÿ‘ฅ๐Ÿ‘ฅ

๊ณ ๊ฐ์„ ์œ ์‚ฌํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง„ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„๋Š” ์„ธ๊ทธ๋จผํ…Œ์ด์…˜์€ ํƒ€๊ฒŸ ๋งˆ์ผ€ํŒ…์— ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. SAS์˜ ํด๋Ÿฌ์Šคํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ์ด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* K-means ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ์ด์šฉํ•œ ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํ…Œ์ด์…˜ */
PROC FASTCLUS DATA=customer_data OUT=clustered_data MAXCLUSTERS=5;
    VAR age income purchase_frequency;
RUN;

PROC SGPLOT DATA=clustered_data;
    SCATTER X=income Y=purchase_frequency / GROUP=CLUSTER;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ณ ๊ฐ์˜ ๋‚˜์ด, ์†Œ๋“, ๊ตฌ๋งค ๋นˆ๋„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ 5๊ฐœ์˜ ํด๋Ÿฌ์Šคํ„ฐ๋กœ ๊ณ ๊ฐ์„ ์„ธ๊ทธ๋จผํŠธํ™”ํ•ฉ๋‹ˆ๋‹ค.

4. ์˜ˆ์ธก ๋ชจ๋ธ๋ง ๐Ÿ”ฎ

๋ฏธ๋ž˜์˜ ๊ณ ๊ฐ ํ–‰๋™์ด๋‚˜ ์บ ํŽ˜์ธ ์„ฑ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. SAS์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ฅผ ์ด์šฉํ•œ ๊ณ ๊ฐ ์ดํƒˆ ์˜ˆ์ธก ๋ชจ๋ธ */
PROC LOGISTIC DATA=customer_data;
    MODEL churn(EVENT='1') = age income satisfaction_score;
    OUTPUT OUT=churn_predictions P=churn_probability;
RUN;

PROC SGPLOT DATA=churn_predictions;
    HISTOGRAM churn_probability;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ณ ๊ฐ์˜ ๋‚˜์ด, ์†Œ๋“, ๋งŒ์กฑ๋„ ์ ์ˆ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ ๊ฐ ์ดํƒˆ ๊ฐ€๋Šฅ์„ฑ์„ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•ฉ๋‹ˆ๋‹ค.

5. ํ…์ŠคํŠธ ๋งˆ์ด๋‹ ๐Ÿ“

๊ณ ๊ฐ ๋ฆฌ๋ทฐ, ์†Œ์…œ ๋ฏธ๋””์–ด ํฌ์ŠคํŠธ ๋“ฑ์˜ ๋น„์ •ํ˜• ๋ฐ์ดํ„ฐ์—์„œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ถ”์ถœํ•˜๋Š” ํ…์ŠคํŠธ ๋งˆ์ด๋‹๋„ SAS๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ํ…์ŠคํŠธ ๋งˆ์ด๋‹์„ ์ด์šฉํ•œ ๊ฐ์„ฑ ๋ถ„์„ */
PROC TEXTMINING DATA=reviews;
    PARSE TEXT;
    TOPIC NUM_TOPICS=5;
    SENTIMENT;
RUN;

PROC SGPLOT DATA=sentiment_results;
    VBAR sentiment / RESPONSE=count;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ณ ๊ฐ ๋ฆฌ๋ทฐ ํ…์ŠคํŠธ์—์„œ ์ฃผ์š” ํ† ํ”ฝ์„ ์ถ”์ถœํ•˜๊ณ  ๊ฐ์„ฑ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

6. ๋„คํŠธ์›Œํฌ ๋ถ„์„ ๐Ÿ•ธ๏ธ

๊ณ ๊ฐ ๊ฐ„์˜ ๊ด€๊ณ„๋‚˜ ์ œํ’ˆ ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์„ ๋ถ„์„ํ•˜๋Š” ๋„คํŠธ์›Œํฌ ๋ถ„์„๋„ SAS๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ๋„คํŠธ์›Œํฌ ๋ถ„์„์„ ์ด์šฉํ•œ ์ œํ’ˆ ์ถ”์ฒœ ์‹œ์Šคํ…œ */
PROC OPTNETWORK
    DATA_LINKS = product_purchases;
    COMMUNITY
        ALGORITHM = LOUVAIN
        OUT = communities;
RUN;

PROC SGPLOT DATA=communities;
    SCATTER X=x Y=y / GROUP=community;
RUN;

์ด ์ฝ”๋“œ๋Š” ์ œํ’ˆ ๊ตฌ๋งค ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ปค๋ฎค๋‹ˆํ‹ฐ ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‹คํ–‰ํ•˜์—ฌ ์—ฐ๊ด€ ์ œํ’ˆ ๊ทธ๋ฃน์„ ์ฐพ์•„๋ƒ…๋‹ˆ๋‹ค.

7. ์‹œ๊ฐํ™” ๋ฐ ๋Œ€์‹œ๋ณด๋“œ ์ƒ์„ฑ ๐Ÿ“Š

SAS Visual Analytics๋ฅผ ํ™œ์šฉํ•˜๋ฉด ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒํ•œ ๋Œ€์‹œ๋ณด๋“œ๋กœ ๋งŒ๋“ค์–ด ์˜์‚ฌ๊ฒฐ์ •์ž๋“ค์—๊ฒŒ ํšจ๊ณผ์ ์œผ๋กœ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* SAS Visual Analytics๋ฅผ ์ด์šฉํ•œ ๋Œ€์‹œ๋ณด๋“œ ์ƒ์„ฑ */
PROC VISANALYTICS DATA=campaign_results;
    DASHBOARD NAME="Marketing Campaign Dashboard";
    CHART TYPE=BAR X=channel Y=roi;
    CHART TYPE=LINE X=date Y=sales;
    MAP REGION=customer_location RESPONSE=sales;
RUN;

์ด ์ฝ”๋“œ๋Š” ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ ๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๋Š” ๋Œ€์‹œ๋ณด๋“œ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ฑ„๋„๋ณ„ ROI, ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋งค์ถœ ๋ณ€ํ™”, ์ง€์—ญ๋ณ„ ๋งค์ถœ ๋ถ„ํฌ ๋“ฑ์„ ํ•œ๋ˆˆ์— ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ย 

์ด๋Ÿฌํ•œ ๊ณ ๊ธ‰ ๋ถ„์„ ๊ธฐ๋ฒ•๋“ค์„ ํ™œ์šฉํ•˜๋ฉด, ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์˜ ํšจ๊ณผ์„ฑ์„ ๋”์šฑ ์ •๊ตํ•˜๊ฒŒ ๋ถ„์„ํ•˜๊ณ  ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์žฌ๋Šฅ๋„ท๊ณผ ๊ฐ™์€ ํ”Œ๋žซํผ์—์„œ๋„ ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•๋“ค์„ ์ ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ๊ฐœ์„ ํ•˜๊ณ , ๋” ํšจ๊ณผ์ ์ธ ๋งˆ์ผ€ํŒ… ์ „๋žต์„ ์ˆ˜๋ฆฝํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํ…Œ์ด์…˜์„ ํ†ตํ•ด ๊ฐ ์žฌ๋Šฅ ํŒ๋งค์ž์—๊ฒŒ ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๊ตฌ๋งค์ž ๊ทธ๋ฃน์„ ์ฐพ์•„ ํƒ€๊ฒŸ ๋งˆ์ผ€ํŒ…์„ ์ˆ˜ํ–‰ํ•˜๊ฑฐ๋‚˜, ํ…์ŠคํŠธ ๋งˆ์ด๋‹์„ ํ†ตํ•ด ์‚ฌ์šฉ์ž ๋ฆฌ๋ทฐ์—์„œ ๊ฐœ์„ ์ ์„ ๋„์ถœํ•˜๋Š” ๋“ฑ ๋‹ค์–‘ํ•œ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

๐Ÿš€ SAS๋ฅผ ํ™œ์šฉํ•œ ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ ์ตœ์ ํ™” ์ „๋žต ๐Ÿš€

์ง€๊ธˆ๊นŒ์ง€ ์‚ดํŽด๋ณธ ๋ถ„์„ ๊ธฐ๋ฒ•๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ, ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์„ ์ตœ์ ํ™”ํ•˜๋Š” ์ „๋žต์„ ์ˆ˜๋ฆฝํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์„น์…˜์—์„œ๋Š” SAS๋ฅผ ํ™œ์šฉํ•œ ๊ตฌ์ฒด์ ์ธ ์ตœ์ ํ™” ์ „๋žต๊ณผ ๊ทธ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

1. 1. ํƒ€๊ฒŸ ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํŠธ ์ตœ์ ํ™” ๐ŸŽฏ

CLV ๋ถ„์„๊ณผ ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํ…Œ์ด์…˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๊ฐ€์žฅ ๊ฐ€์น˜ ์žˆ๋Š” ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํŠธ๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ์ด์— ๋งž์ถ˜ ์บ ํŽ˜์ธ์„ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ๊ณ ๊ฐ€์น˜ ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํŠธ ์‹๋ณ„ */
PROC SQL;
    CREATE TABLE high_value_segments AS
    SELECT 
        cluster,
        AVG(clv) AS avg_clv,
        COUNT(*) AS segment_size
    FROM clustered_data
    GROUP BY cluster
    HAVING AVG(clv) > (SELECT AVG(clv) FROM clustered_data);
QUIT;

PROC SGPLOT DATA=high_value_segments;
    VBAR cluster / RESPONSE=avg_clv;
RUN;

์ด ์ฝ”๋“œ๋Š” ํ‰๊ท  ์ด์ƒ์˜ CLV๋ฅผ ๊ฐ€์ง„ ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํŠธ๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ ์„ธ๊ทธ๋จผํŠธ์— ๋งž๋Š” ๋งž์ถคํ˜• ์บ ํŽ˜์ธ์„ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

2. ์ฑ„๋„ ์ตœ์ ํ™” ๐Ÿ“บ๐Ÿ“ฑ๐Ÿ’ป

๋งˆ์ผ€ํŒ… ๋ฏน์Šค ๋ชจ๋ธ๋ง ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ฐ ์ฑ„๋„์˜ ํšจ๊ณผ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ , ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์ฑ„๋„์— ๋” ๋งŽ์€ ์˜ˆ์‚ฐ์„ ํ• ๋‹นํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ์ฑ„๋„ ํšจ๊ณผ์„ฑ ๋ถ„์„ */
PROC REG DATA=marketing_mix;
    MODEL sales = tv_ad print_ad social_media_ad;
    OUTPUT OUT=channel_effectiveness P=predicted_sales;
RUN;

PROC SQL;
    SELECT 
        'TV' AS channel, tv_ad AS coefficient
    FROM channel_effectiveness
    UNION ALL
    SELECT 
        'Print' AS channel, print_ad AS coefficient
    FROM channel_effectiveness
    UNION ALL
    SELECT 
        'Social Media' AS channel, social_media_ad AS coefficient
    FROM channel_effectiveness;
QUIT;

PROC SGPLOT DATA=channel_effectiveness;
    VBAR channel / RESPONSE=coefficient;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ฐ ์ฑ„๋„์˜ ํšจ๊ณผ์„ฑ(ํšŒ๊ท€ ๊ณ„์ˆ˜)๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์ฑ„๋„์— ๋” ๋งŽ์€ ์˜ˆ์‚ฐ์„ ํ• ๋‹นํ•˜๋Š” ์ „๋žต์„ ์ˆ˜๋ฆฝํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

3. ์บ ํŽ˜์ธ ํƒ€์ด๋ฐ ์ตœ์ ํ™” โฐ

์‹œ๊ณ„์—ด ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์บ ํŽ˜์ธ์˜ ์ตœ์  ์‹คํ–‰ ์‹œ๊ธฐ๋ฅผ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ์‹œ๊ฐ„๋Œ€๋ณ„ ํšจ๊ณผ์„ฑ ๋ถ„์„ */
PROC TIMESERIES DATA=campaign_data OUT=time_effectiveness;
    ID date INTERVAL=HOUR;
    VAR conversion_rate;
RUN;

PROC SGPLOT DATA=time_effectiveness;
    SERIES X=date Y=conversion_rate;
    LOESS X=date Y=conversion_rate / LINEATTRS=(COLOR=red);
RUN;

์ด ์ฝ”๋“œ๋Š” ์‹œ๊ฐ„๋Œ€๋ณ„ ์ „ํ™˜์œจ์„ ๋ถ„์„ํ•˜๊ณ  ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ „ํ™˜์œจ์ด ๊ฐ€์žฅ ๋†’์€ ์‹œ๊ฐ„๋Œ€๋ฅผ ์‹๋ณ„ํ•˜์—ฌ ์บ ํŽ˜์ธ ์‹คํ–‰ ์‹œ๊ธฐ๋ฅผ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

4. ๊ฐœ์ธํ™” ์ „๋žต ์ˆ˜๋ฆฝ ๐Ÿ‘ค

์˜ˆ์ธก ๋ชจ๋ธ๋ง ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ฐ ๊ณ ๊ฐ์—๊ฒŒ ๋งž์ถคํ˜• ๋ฉ”์‹œ์ง€์™€ ์˜คํผ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ๊ณ ๊ฐ๋ณ„ ๋งž์ถค ์˜คํผ ์ƒ์„ฑ */
PROC LOGISTIC DATA=customer_data;
    MODEL purchase(EVENT='1') = age income product_interest;
    OUTPUT OUT=purchase_predictions P=purchase_probability;
RUN;

DATA personalized_offers;
    SET purchase_predictions;
    IF purchase_probability > 0.7 THEN offer = 'Premium';
    ELSE IF purchase_probability > 0.4 THEN offer = 'Standard';
    ELSE offer = 'Basic';
RUN;

PROC FREQ DATA=personalized_offers;
    TABLES offer;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ณ ๊ฐ์˜ ๊ตฌ๋งค ๊ฐ€๋Šฅ์„ฑ์„ ์˜ˆ์ธกํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋งž์ถคํ˜• ์˜คํผ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

5. ์ฝ˜ํ…์ธ  ์ตœ์ ํ™” ๐Ÿ“

ํ…์ŠคํŠธ ๋งˆ์ด๋‹ ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ณ ๊ฐ์˜ ๊ด€์‹ฌ์‚ฌ์— ๋งž๋Š” ์ฝ˜ํ…์ธ ๋ฅผ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ์ธ๊ธฐ ํ† ํ”ฝ ๋ถ„์„ */
PROC TEXTMINING DATA=customer_reviews;
    PARSE TEXT;
    TOPIC NUM_TOPICS=5;
RUN;

PROC SQL;
    SELECT topic, COUNT(*) AS frequency
    FROM topic_results
    GROUP BY topic
    ORDER BY frequency DESC;
QUIT;

PROC SGPLOT DATA=topic_results;
    VBAR topic / RESPONSE=frequency;
RUN;

์ด ์ฝ”๋“œ๋Š” ๊ณ ๊ฐ ๋ฆฌ๋ทฐ์—์„œ ๊ฐ€์žฅ ์ž์ฃผ ์–ธ๊ธ‰๋˜๋Š” ํ† ํ”ฝ์„ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ณ ๊ฐ์˜ ๊ด€์‹ฌ์‚ฌ์— ๋งž๋Š” ์ฝ˜ํ…์ธ ๋ฅผ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

6. ์‹ค์‹œ๊ฐ„ ์บ ํŽ˜์ธ ์กฐ์ • โšก

SAS Event Stream Processing์„ ํ™œ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์บ ํŽ˜์ธ ์„ฑ๊ณผ๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* ์‹ค์‹œ๊ฐ„ ์บ ํŽ˜์ธ ๋ชจ๋‹ˆํ„ฐ๋ง */
PROC STREAMPARSE;
    DECLARE INPUT STREAM campaign_data;
    DECLARE OUTPUT STREAM performance_alerts;

    SELECT *
    FROM campaign_data
    WHERE conversion_rate < threshold
    INTO performance_alerts;
RUN;

์ด ์ฝ”๋“œ๋Š” ์‹ค์‹œ๊ฐ„์œผ๋กœ ์œ ์ž…๋˜๋Š” ์บ ํŽ˜์ธ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์„ฑ๊ณผ๊ฐ€ ๊ธฐ์ค€์น˜ ์ดํ•˜๋กœ ๋–จ์–ด์งˆ ๊ฒฝ์šฐ ์•Œ๋ฆผ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

7. A/B ํ…Œ์ŠคํŠธ ์ตœ์ ํ™” ๐Ÿ†Ž

SAS์˜ ์‹คํ—˜ ์„ค๊ณ„ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•˜์—ฌ ํšจ๊ณผ์ ์ธ A/B ํ…Œ์ŠคํŠธ๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


/* A/B ํ…Œ์ŠคํŠธ ๋ถ„์„ */
PROC TTEST DATA=ab_test_results;
    CLASS group;
    VAR conversion_rate;
RUN;

PROC SGPLOT DATA=ab_test_results;
    VBOX conversion_rate / CATEGORY=group;
RUN;

์ด ์ฝ”๋“œ๋Š” A/B ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ๋‘ ๊ทธ๋ฃน ๊ฐ„์˜ ์ „ํ™˜์œจ ์ฐจ์ด๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•œ์ง€ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค.

ย 

์ด๋Ÿฌํ•œ ์ตœ์ ํ™” ์ „๋žต๋“ค์„ SAS๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ตฌํ˜„ํ•จ์œผ๋กœ์จ, ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ์˜ ํšจ๊ณผ์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์žฌ๋Šฅ๋„ท๊ณผ ๊ฐ™์€ ํ”Œ๋žซํผ์—์„œ๋„ ์ด๋Ÿฌํ•œ ์ „๋žต๋“ค์„ ์ ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ๊ฐœ์„ ํ•˜๊ณ , ํ”Œ๋žซํผ์˜ ์„ฑ์žฅ์„ ๊ฐ€์†ํ™”ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณ ๊ฐ€์น˜ ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํŠธ๋ฅผ ์‹๋ณ„ํ•˜์—ฌ VIP ํ”„๋กœ๊ทธ๋žจ์„ ์šด์˜ํ•˜๊ฑฐ๋‚˜, ์‹ค์‹œ๊ฐ„ ์บ ํŽ˜์ธ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ํ†ตํ•ด ์ฆ‰๊ฐ์ ์œผ๋กœ ๋งˆ์ผ€ํŒ… ์ „๋žต์„ ์กฐ์ •ํ•˜๋Š” ๋“ฑ์˜ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐ŸŒŸ ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์ „๋ง ๐ŸŒŸ

SAS๋ฅผ ํ™œ์šฉํ•œ ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ ํšจ๊ณผ์„ฑ ๋ถ„์„ ๋ฐ ROI ์‚ฐ์ถœ์€ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์˜์‚ฌ๊ฒฐ์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋ฉฐ, ๋งˆ์ผ€ํŒ… ์ „๋žต์„ ์ง€์†์ ์œผ๋กœ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์—…์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ด์ ์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

  • ์ •ํ™•ํ•œ ROI ์ธก์ •์„ ํ†ตํ•œ ์˜ˆ์‚ฐ ์ตœ์ ํ™”
  • ๊ณ ๊ฐ ์„ธ๊ทธ๋จผํŠธ๋ณ„ ๋งž์ถคํ˜• ์ „๋žต ์ˆ˜๋ฆฝ
  • ์‹ค์‹œ๊ฐ„ ์บ ํŽ˜์ธ ์„ฑ๊ณผ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ ์กฐ์ •
  • ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ์˜ˆ์ธก ๋ชจ๋ธ๋ง์„ ํ†ตํ•œ ์„ ์ œ์  ๋งˆ์ผ€ํŒ…
  • ๋‹ค์ฑ„๋„ ๋งˆ์ผ€ํŒ… ํšจ๊ณผ์˜ ํ†ตํ•ฉ์  ๋ถ„์„

ํ–ฅํ›„ ๋งˆ์ผ€ํŒ… ๋ถ„์„์˜ ํŠธ๋ Œ๋“œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ์ „ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค:

  1. AI์™€ ๋จธ์‹ ๋Ÿฌ๋‹์˜ ๊ณ ๋„ํ™”: ๋”์šฑ ์ •๊ตํ•œ ์˜ˆ์ธก ๋ชจ๋ธ๊ณผ ์ž๋™ํ™”๋œ ์˜์‚ฌ๊ฒฐ์ • ์‹œ์Šคํ…œ์ด ๋“ฑ์žฅํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  2. ์‹ค์‹œ๊ฐ„ ๋ถ„์„์˜ ์ค‘์š”์„ฑ ์ฆ๋Œ€: 5G ๊ธฐ์ˆ ์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋ฐ ๋ถ„์„์˜ ์ค‘์š”์„ฑ์ด ๋”์šฑ ์ปค์งˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  3. ๊ฐœ์ธํ™”์˜ ๊ทน๋Œ€ํ™”: ๋น…๋ฐ์ดํ„ฐ์™€ AI๋ฅผ ํ™œ์šฉํ•œ ์ดˆ๊ฐœ์ธํ™” ๋งˆ์ผ€ํŒ…์ด ๋ณดํŽธํ™”๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  4. ํ”„๋ผ์ด๋ฒ„์‹œ ์ค‘์‹ฌ ๋ถ„์„: ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ ๊ทœ์ œ ๊ฐ•ํ™”์— ๋”ฐ๋ผ, ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๋ณด์žฅํ•˜๋ฉด์„œ๋„ ํšจ๊ณผ์ ์ธ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  5. ํ†ตํ•ฉ ๋งˆ์ผ€ํŒ… ๋ถ„์„ ํ”Œ๋žซํผ: ๋‹ค์–‘ํ•œ ์ฑ„๋„๊ณผ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋Š” ์˜ฌ์ธ์› ํ”Œ๋žซํผ์˜ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์žฌ๋Šฅ๋„ท๊ณผ ๊ฐ™์€ ํ”Œ๋žซํผ์—์„œ๋„ ์ด๋Ÿฌํ•œ ํŠธ๋ Œ๋“œ๋ฅผ ์ฃผ์‹œํ•˜๊ณ  ์ ๊ทน์ ์œผ๋กœ ๋„์ž…ํ•จ์œผ๋กœ์จ, ์‚ฌ์šฉ์ž๋“ค์—๊ฒŒ ๋” ๋‚˜์€ ๊ฒฝํ—˜์„ ์ œ๊ณตํ•˜๊ณ  ํ”Œ๋žซํผ์˜ ๊ฐ€์น˜๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, AI ๊ธฐ๋ฐ˜์˜ ์žฌ๋Šฅ ๋งค์นญ ์‹œ์Šคํ…œ์„ ๋„์ž…ํ•˜๊ฑฐ๋‚˜, ์‹ค์‹œ๊ฐ„ ๊ฐ€๊ฒฉ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜๋Š” ๋“ฑ์˜ ๋ฐฉ๋ฒ•์„ ๊ณ ๋ คํ•ด๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ฒฐ๋ก ์ ์œผ๋กœ, SAS๋ฅผ ํ™œ์šฉํ•œ ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ ํšจ๊ณผ์„ฑ ๋ถ„์„ ๋ฐ ROI ์‚ฐ์ถœ์€ ํ˜„์žฌ์˜ ๋งˆ์ผ€ํŒ… ํ™˜๊ฒฝ์—์„œ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋ฉฐ, ์•ž์œผ๋กœ๋„ ๊ทธ ์ค‘์š”์„ฑ์€ ๋”์šฑ ์ปค์งˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋Šฅ๋ ฅ์„ ์ง€์†์ ์œผ๋กœ ๋ฐœ์ „์‹œํ‚ค๊ณ , ์ตœ์‹  ํŠธ๋ Œ๋“œ๋ฅผ ์ ๊ทน์ ์œผ๋กœ ์ˆ˜์šฉํ•˜๋Š” ๊ธฐ์—…๋งŒ์ด ์น˜์—ดํ•œ ๊ฒฝ์Ÿ ์†์—์„œ ์‚ด์•„๋‚จ์„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค. SAS์™€ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ๋ถ„์„ ๋„๊ตฌ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ, ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์Šค๋งˆํŠธํ•œ ๋งˆ์ผ€ํŒ… ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜๊ณ  ์‹คํ–‰ํ•˜๋Š” ๊ฒƒ์ด ๋ฏธ๋ž˜ ๋น„์ฆˆ๋‹ˆ์Šค ์„ฑ๊ณต์˜ ํ•ต์‹ฌ์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.