๐Ÿค– ์‹œ๊ฐ์  ์งˆ์˜์‘๋‹ต(VQA) ์‹œ์Šคํ…œ ๊ตฌํ˜„: AI์˜ ๋ˆˆ๊ณผ ์ž…์„ ๋งŒ๋“ค์–ด๋ณด์ž! ๐Ÿง ๐Ÿ‘€

์ฝ˜ํ…์ธ  ๋Œ€ํ‘œ ์ด๋ฏธ์ง€ - ๐Ÿค– ์‹œ๊ฐ์  ์งˆ์˜์‘๋‹ต(VQA) ์‹œ์Šคํ…œ ๊ตฌํ˜„: AI์˜ ๋ˆˆ๊ณผ ์ž…์„ ๋งŒ๋“ค์–ด๋ณด์ž! ๐Ÿง ๐Ÿ‘€

 

 

์•ˆ๋…•ํ•˜์„ธ์š”, ์—ฌ๋Ÿฌ๋ถ„! ์˜ค๋Š˜์€ ์ •๋ง ํฅ๋ฏธ์ง„์ง„ํ•œ ์ฃผ์ œ๋กœ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ํ•จ๊ป˜ ์ด์•ผ๊ธฐ๋ฅผ ๋‚˜๋ˆ ๋ณผ ๊ฑฐ์˜ˆ์š”. ๋ฐ”๋กœ ์‹œ๊ฐ์  ์งˆ์˜์‘๋‹ต(Visual Question Answering, VQA) ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด์„œ์ฃ ! ๐Ÿ˜Ž ์ด ์ฃผ์ œ, ๋ญ”๊ฐ€ ์–ด๋ ค์›Œ ๋ณด์ด์ง€๋งŒ ๊ฑฑ์ • ๋งˆ์„ธ์š”. ์šฐ๋ฆฌ ํ•จ๊ป˜ ์ฐจ๊ทผ์ฐจ๊ทผ ํŒŒํ—ค์ณ๋ณผ ๊ฑฐ๋‹ˆ๊นŒ์š”!

VQA ์‹œ์Šคํ…œ์ด ๋ญ๋ƒ๊ณ ์š”? ๊ฐ„๋‹จํžˆ ๋งํ•ด์„œ, ์ปดํ“จํ„ฐ๊ฐ€ ์ด๋ฏธ์ง€๋ฅผ ๋ณด๊ณ  ๊ทธ์— ๋Œ€ํ•œ ์งˆ๋ฌธ์— ๋‹ตํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฑฐ์˜ˆ์š”. ๋งˆ์น˜ ์—ฌ๋Ÿฌ๋ถ„์ด ์นœ๊ตฌ์—๊ฒŒ ์‚ฌ์ง„์„ ๋ณด์—ฌ์ฃผ๊ณ  "์ด ์‚ฌ์ง„์—์„œ ๋ญ๊ฐ€ ๋ณด์—ฌ?"๋ผ๊ณ  ๋ฌผ์–ด๋ณด๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”. ๊ทผ๋ฐ ์ด๋ฒˆ์—” ์ปดํ“จํ„ฐ๊ฐ€ ๊ทธ ์นœ๊ตฌ ์—ญํ• ์„ ํ•˜๋Š” ๊ฑฐ์ฃ ! ใ…‹ใ…‹ใ…‹

์ด ๊ธฐ์ˆ ์€ ์ •๋ง ๋Œ€๋‹จํ•ด์š”. ์ƒ๊ฐํ•ด๋ณด์„ธ์š”. ์ปดํ“จํ„ฐ๊ฐ€ ์ด๋ฏธ์ง€๋ฅผ '์ดํ•ด'ํ•˜๊ณ , ์งˆ๋ฌธ์˜ ์˜๋ฏธ๋ฅผ 'ํŒŒ์•…'ํ•˜๊ณ , ๊ทธ์— ๋งž๋Š” '๋Œ€๋‹ต'์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋‹ˆ! ๐Ÿคฏ ๋งˆ์น˜ SF ์˜ํ™”์—์„œ๋‚˜ ๋ณผ ๋ฒ•ํ•œ ์ผ์ด ํ˜„์‹ค์ด ๋˜๊ณ  ์žˆ๋Š” ๊ฑฐ์˜ˆ์š”.

VQA ์‹œ์Šคํ…œ์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์–ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, ์‹œ๊ฐ ์žฅ์• ์ธ์„ ์œ„ํ•œ ๋ณด์กฐ ๊ธฐ์ˆ ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์ฃ . ๋˜๋Š” ์˜จ๋ผ์ธ ์‡ผํ•‘์—์„œ ์ƒํ’ˆ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์งˆ๋ฌธ์— ์ž๋™์œผ๋กœ ๋‹ต๋ณ€์„ ์ œ๊ณตํ•  ์ˆ˜๋„ ์žˆ๊ณ ์š”. ์‹ฌ์ง€์–ด ์˜๋ฃŒ ๋ถ„์•ผ์—์„œ X-ray๋‚˜ MRI ์ด๋ฏธ์ง€๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋ฐ์—๋„ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์–ด์š”.

์—ฌ๋Ÿฌ๋ถ„, ํ˜น์‹œ ์žฌ๋Šฅ๋„ท์ด๋ผ๋Š” ์‚ฌ์ดํŠธ ์•„์„ธ์š”? ๊ฑฐ๊ธฐ์„œ๋„ ์ด๋Ÿฐ VQA ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™์•„์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, ์‚ฌ์šฉ์ž๊ฐ€ ์—…๋กœ๋“œํ•œ ์ž‘ํ’ˆ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ์ž๋™์œผ๋กœ ์„ค๋ช…์„ ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜, ๋‹ค๋ฅธ ์‚ฌ์šฉ์ž๋“ค์˜ ์งˆ๋ฌธ์— ๋‹ต๋ณ€์„ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๊ฒ ์ฃ . ์ด๋Ÿฐ ์‹์œผ๋กœ VQA ๊ธฐ์ˆ ์€ ๋‹ค์–‘ํ•œ ํ”Œ๋žซํผ์—์„œ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์–ด์š”.

์ž, ์ด์ œ ๋ณธ๊ฒฉ์ ์œผ๋กœ VQA ์‹œ์Šคํ…œ์„ ์–ด๋–ป๊ฒŒ ๊ตฌํ˜„ํ•˜๋Š”์ง€ ์•Œ์•„๋ณผ๊นŒ์š”? ์ค€๋น„๋˜์…จ๋‚˜์š”? ๊ทธ๋Ÿผ ์ถœ๋ฐœ~! ๐Ÿš€

๐Ÿงฉ VQA ์‹œ์Šคํ…œ์˜ ๊ตฌ์„ฑ ์š”์†Œ

VQA ์‹œ์Šคํ…œ์„ ๋งŒ๋“ค๋ ค๋ฉด ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์š”์†Œ๋“ค์ด ํ•„์š”ํ•ด์š”. ๋งˆ์น˜ ๋ ˆ๊ณ  ๋ธ”๋ก์„ ์กฐ๋ฆฝํ•˜๋“ฏ์ด, ์ด ์š”์†Œ๋“ค์„ ์ž˜ ์กฐํ•ฉํ•ด์•ผ ์šฐ๋ฆฌ์˜ AI๊ฐ€ ์ œ๋Œ€๋กœ ์ž‘๋™ํ•˜๊ฒ ์ฃ ? ๊ทธ๋Ÿผ ์–ด๋–ค ์š”์†Œ๋“ค์ด ํ•„์š”ํ•œ์ง€ ์‚ดํŽด๋ณผ๊นŒ์š”?

  • ๐Ÿ–ผ๏ธ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๋ชจ๋“ˆ: ์ž…๋ ฅ๋œ ์ด๋ฏธ์ง€๋ฅผ ์ดํ•ดํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ๋ถ€๋ถ„
  • ๐Ÿ“ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ชจ๋“ˆ: ์งˆ๋ฌธ์„ ์ดํ•ดํ•˜๊ณ  ํ•ด์„ํ•˜๋Š” ๋ถ€๋ถ„
  • ๐Ÿง  ์ถ”๋ก  ์—”์ง„: ์ด๋ฏธ์ง€ ์ •๋ณด์™€ ์งˆ๋ฌธ์„ ๊ฒฐํ•ฉํ•ด ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๋Š” ๋ถ€๋ถ„
  • ๐Ÿ’พ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค: ํ•™์Šต์— ํ•„์š”ํ•œ ์ด๋ฏธ์ง€-์งˆ๋ฌธ-๋‹ต๋ณ€ ๋ฐ์ดํ„ฐ์…‹์„ ์ €์žฅํ•˜๋Š” ๋ถ€๋ถ„
  • ๐ŸŽ›๏ธ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค: ์‚ฌ์šฉ์ž๊ฐ€ ์‹œ์Šคํ…œ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„

์ด ์š”์†Œ๋“ค์ด ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€ ์ข€ ๋” ์ž์„ธํžˆ ์•Œ์•„๋ณผ๊นŒ์š”? ๐Ÿค“

1. ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๋ชจ๋“ˆ ๐Ÿ–ผ๏ธ

์ด ๋ชจ๋“ˆ์€ ์ž…๋ ฅ๋œ ์ด๋ฏธ์ง€๋ฅผ ์ปดํ“จํ„ฐ๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•ด์š”. ์ฃผ๋กœ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(CNN, Convolutional Neural Network)์„ ์‚ฌ์šฉํ•˜์ฃ . CNN์€ ์ด๋ฏธ์ง€์—์„œ ์ค‘์š”ํ•œ ํŠน์ง•๋“ค์„ ์ถ”์ถœํ•ด๋‚ด๋Š” ๋ฐ ํƒ์›”ํ•ด์š”.

์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณ ์–‘์ด ์‚ฌ์ง„์„ ์ž…๋ ฅํ–ˆ๋‹ค๊ณ  ํ•ด๋ณผ๊นŒ์š”? CNN์€ ์ด ์ด๋ฏธ์ง€์—์„œ ๊ณ ์–‘์ด์˜ ๊ท€, ๋ˆˆ, ์ˆ˜์—ผ ๋“ฑ์˜ ํŠน์ง•์„ ์ธ์‹ํ•˜๊ณ , ์ด๋ฅผ ์ˆซ์ž๋กœ ๋œ ๋ฒกํ„ฐ(ํŠน์ง• ๋ฒกํ„ฐ๋ผ๊ณ  ํ•ด์š”)๋กœ ๋ณ€ํ™˜ํ•ด์š”. ์ด ๋ฒกํ„ฐ๋Š” ๋‚˜์ค‘์— ์ถ”๋ก  ์—”์ง„์—์„œ ์‚ฌ์šฉ๋˜๊ฒŒ ๋˜์ฃ .

CNN์˜ ๊ตฌ์กฐ๋Š” ๋Œ€๋žต ์ด๋Ÿฐ ์‹์ด์—์š”:

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.fc = nn.Linear(32 * 56 * 56, 1000)  # ์˜ˆ์‹œ ํฌ๊ธฐ

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

์ด ์ฝ”๋“œ๋Š” ๊ฐ„๋‹จํ•œ CNN์˜ ์˜ˆ์‹œ์—์š”. ์‹ค์ œ๋กœ๋Š” ๋” ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ฒ ์ง€๋งŒ, ๊ธฐ๋ณธ์ ์ธ ์•„์ด๋””์–ด๋Š” ์ด๋ ‡๋‹ต๋‹ˆ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์ธต(Conv2d)๊ณผ ํ’€๋ง ์ธต(max_pool2d)์„ ํ†ตํ•ด ์ด๋ฏธ์ง€์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , ๋งˆ์ง€๋ง‰์— ์™„์ „ ์—ฐ๊ฒฐ ์ธต(fc)์„ ํ†ตํ•ด ์ตœ์ข… ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฑฐ์ฃ .

2. ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ชจ๋“ˆ ๐Ÿ“

์ด ๋ชจ๋“ˆ์€ ์‚ฌ์šฉ์ž์˜ ์งˆ๋ฌธ์„ ์ดํ•ดํ•˜๊ณ  ์ฒ˜๋ฆฌํ•˜๋Š” ์—ญํ• ์„ ํ•ด์š”. ์ฃผ๋กœ ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง(RNN, Recurrent Neural Network)์ด๋‚˜ ํŠธ๋žœ์Šคํฌ๋จธ(Transformer) ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์ฃ .

์˜ˆ๋ฅผ ๋“ค์–ด, "๊ณ ์–‘์ด์˜ ์ƒ‰๊น”์€ ๋ฌด์—‡์ธ๊ฐ€์š”?"๋ผ๋Š” ์งˆ๋ฌธ์ด ๋“ค์–ด์™”๋‹ค๊ณ  ํ•ด๋ณผ๊นŒ์š”? ์ด ๋ชจ๋“ˆ์€ ์งˆ๋ฌธ์„ ๋‹จ์–ด ๋‹จ์œ„๋กœ ์ชผ๊ฐœ๊ณ , ๊ฐ ๋‹จ์–ด๋ฅผ ์ˆซ์ž๋กœ ๋œ ๋ฒกํ„ฐ(์ž„๋ฒ ๋”ฉ์ด๋ผ๊ณ  ํ•ด์š”)๋กœ ๋ณ€ํ™˜ํ•ด์š”. ๊ทธ๋ฆฌ๊ณ  ์ด ๋ฒกํ„ฐ๋“ค์„ ์ˆœ์„œ๋Œ€๋กœ ์ฒ˜๋ฆฌํ•ด์„œ ์งˆ๋ฌธ ์ „์ฒด์˜ ์˜๋ฏธ๋ฅผ ๋‹ด์€ ๋ฒกํ„ฐ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด์ฃ .

๊ฐ„๋‹จํ•œ RNN ๊ตฌ์กฐ์˜ ์˜ˆ์‹œ๋ฅผ ๋ณผ๊นŒ์š”?

class RNN(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim):
        super(RNN, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.GRU(embedding_dim, hidden_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, hidden_dim)

    def forward(self, x):
        x = self.embedding(x)
        _, hidden = self.rnn(x)
        out = self.fc(hidden.squeeze(0))
        return out

์ด ์ฝ”๋“œ์—์„œ embedding ์ธต์€ ๋‹จ์–ด๋ฅผ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , rnn ์ธต์€ ์ด ๋ฒกํ„ฐ๋“ค์„ ์ˆœ์„œ๋Œ€๋กœ ์ฒ˜๋ฆฌํ•ด์š”. ๋งˆ์ง€๋ง‰ fc ์ธต์€ RNN์˜ ์ตœ์ข… ์€๋‹‰ ์ƒํƒœ๋ฅผ ๋ฐ›์•„ ์งˆ๋ฌธ ์ „์ฒด๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๋ฒกํ„ฐ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด์ฃ .

์š”์ฆ˜์—” ํŠธ๋žœ์Šคํฌ๋จธ ๋ชจ๋ธ์ด ๋” ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ์ถ”์„ธ์˜ˆ์š”. BERT๋‚˜ GPT ๊ฐ™์€ ๋ชจ๋ธ๋“ค์ด ๋Œ€ํ‘œ์ ์ด์ฃ . ์ด๋Ÿฐ ๋ชจ๋ธ๋“ค์€ ๋” ๋ณต์žกํ•˜์ง€๋งŒ, ๊ธด ๋ฌธ์žฅ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ๋” ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค˜์š”.

3. ์ถ”๋ก  ์—”์ง„ ๐Ÿง 

์ด ๋ถ€๋ถ„์ด VQA ์‹œ์Šคํ…œ์˜ ํ•ต์‹ฌ์ด์—์š”! ์ถ”๋ก  ์—”์ง„์€ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๋ชจ๋“ˆ์—์„œ ๋‚˜์˜จ ์ด๋ฏธ์ง€ ํŠน์ง•๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ชจ๋“ˆ์—์„œ ๋‚˜์˜จ ์งˆ๋ฌธ ํŠน์ง•์„ ๊ฒฐํ•ฉํ•ด์„œ ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•ด๋‚ด์ฃ .

์ฃผ๋กœ ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜(Attention Mechanism)์„ ์‚ฌ์šฉํ•ด์š”. ์–ดํ…์…˜์€ ์งˆ๋ฌธ์— ๋”ฐ๋ผ ์ด๋ฏธ์ง€์˜ ์–ด๋–ค ๋ถ€๋ถ„์— ์ง‘์ค‘ํ•ด์•ผ ํ• ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์—ญํ• ์„ ํ•ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, "๊ณ ์–‘์ด์˜ ์ƒ‰๊น”์€?"์ด๋ผ๋Š” ์งˆ๋ฌธ์— ๋Œ€ํ•ด์„œ๋Š” ๊ณ ์–‘์ด๊ฐ€ ์žˆ๋Š” ๋ถ€๋ถ„์— ์ง‘์ค‘ํ•˜๊ฒ ์ฃ ?

๊ฐ„๋‹จํ•œ ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ์˜ˆ์‹œ๋ฅผ ๋ณผ๊นŒ์š”?

class Attention(nn.Module):
    def __init__(self, image_dim, question_dim, hidden_dim):
        super(Attention, self).__init__()
        self.attention = nn.Linear(image_dim + question_dim, hidden_dim)
        self.v = nn.Linear(hidden_dim, 1, bias=False)

    def forward(self, image_features, question_features):
        batch_size, num_regions, _ = image_features.size()
        question_features = question_features.unsqueeze(1).repeat(1, num_regions, 1)
        concat_features = torch.cat((image_features, question_features), dim=2)
        
        attention = torch.tanh(self.attention(concat_features))
        attention_weights = F.softmax(self.v(attention).squeeze(-1), dim=1)
        
        weighted_features = (image_features * attention_weights.unsqueeze(-1)).sum(dim=1)
        return weighted_features

์ด ์ฝ”๋“œ์—์„œ๋Š” ์ด๋ฏธ์ง€ ํŠน์ง•๊ณผ ์งˆ๋ฌธ ํŠน์ง•์„ ๊ฒฐํ•ฉํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ ์ด๋ฏธ์ง€ ์˜์—ญ์˜ ์ค‘์š”๋„(attention_weights)๋ฅผ ๊ณ„์‚ฐํ•ด์š”. ๊ทธ๋ฆฌ๊ณ  ์ด ์ค‘์š”๋„๋ฅผ ์ด์šฉํ•ด ์ด๋ฏธ์ง€ ํŠน์ง•์˜ ๊ฐ€์ค‘ ํ‰๊ท ์„ ๊ตฌํ•˜์ฃ . ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์งˆ๋ฌธ๊ณผ ๊ด€๋ จ๋œ ์ด๋ฏธ์ง€ ๋ถ€๋ถ„์— ๋” ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ์–ด์š”.

์ถ”๋ก  ์—”์ง„์˜ ์ตœ์ข… ์ถœ๋ ฅ์€ ๋ณดํ†ต ๋‹ต๋ณ€ ํ›„๋ณด๋“ค์— ๋Œ€ํ•œ ํ™•๋ฅ  ๋ถ„ํฌ ํ˜•ํƒœ๊ฐ€ ๋ผ์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, "๊ณ ์–‘์ด์˜ ์ƒ‰๊น”์€?"์ด๋ผ๋Š” ์งˆ๋ฌธ์— ๋Œ€ํ•ด {ํฐ์ƒ‰: 0.7, ๊ฒ€์€์ƒ‰: 0.2, ๊ฐˆ์ƒ‰: 0.1} ๊ฐ™์€ ์‹์œผ๋กœ ๋‚˜์˜ค๋Š” ๊ฑฐ์ฃ . ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ์„ ๊ฐ€์ง„ ๋‹ต๋ณ€์„ ์ตœ์ข… ๋‹ต๋ณ€์œผ๋กœ ์„ ํƒํ•˜๊ฒŒ ๋˜์š”.

4. ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๐Ÿ’พ

VQA ์‹œ์Šคํ…œ์„ ํ•™์Šต์‹œํ‚ค๋ ค๋ฉด ์—„์ฒญ๋‚œ ์–‘์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•ด์š”. ์ด ๋ฐ์ดํ„ฐ๋Š” ๋ณดํ†ต (์ด๋ฏธ์ง€, ์งˆ๋ฌธ, ๋‹ต๋ณ€) ํ˜•ํƒœ์˜ ํŠธ๋ฆฌํ”Œ๋กœ ๊ตฌ์„ฑ๋˜์ฃ . ์˜ˆ๋ฅผ ๋“ค๋ฉด:

  • ์ด๋ฏธ์ง€: ๊ณ ์–‘์ด ์‚ฌ์ง„
  • ์งˆ๋ฌธ: "๊ณ ์–‘์ด์˜ ์ƒ‰๊น”์€?"
  • ๋‹ต๋ณ€: "ํฐ์ƒ‰"

์ด๋Ÿฐ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“œ๋Š” ๊ฑด ์ •๋ง ํฐ ์ž‘์—…์ด์—์š”. ๋‹คํ–‰ํžˆ ์ด๋ฏธ ๊ณต๊ฐœ๋œ ๋ฐ์ดํ„ฐ์…‹๋“ค์ด ์žˆ์–ด์š”. VQA Dataset, COCO-QA, Visual7W ๋“ฑ์ด ๋Œ€ํ‘œ์ ์ด์ฃ . ์ด๋Ÿฐ ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜๋ฉด ์šฐ๋ฆฌ๊ฐ€ ์ง์ ‘ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์œผ๋Š” ์ˆ˜๊ณ ๋ฅผ ๋œ ์ˆ˜ ์žˆ์–ด์š”.

๋ฐ์ดํ„ฐ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ณ  ์ ‘๊ทผํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•ด์š”. SQL ๊ธฐ๋ฐ˜์˜ ๊ด€๊ณ„ํ˜• ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋‚˜ MongoDB ๊ฐ™์€ NoSQL ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์ฃ . ์˜ˆ๋ฅผ ๋“ค์–ด, MongoDB๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋ฉด ์ด๋Ÿฐ ์‹์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•  ์ˆ˜ ์žˆ์–ด์š”:

{
    "_id": ObjectId("5f50c31e8a43e42a1d2a5b1e"),
    "image_path": "/path/to/cat_image.jpg",
    "question": "๊ณ ์–‘์ด์˜ ์ƒ‰๊น”์€?",
    "answer": "ํฐ์ƒ‰",
    "image_features": [0.1, 0.2, ..., 0.9],  // CNN์œผ๋กœ ์ถ”์ถœํ•œ ํŠน์ง• ๋ฒกํ„ฐ
    "question_features": [0.3, 0.4, ..., 0.7]  // RNN์œผ๋กœ ์ถ”์ถœํ•œ ํŠน์ง• ๋ฒกํ„ฐ
}

์ด๋ ‡๊ฒŒ ์ €์žฅํ•ด๋‘๋ฉด ํ•™์Šต ์‹œ์— ๋น ๋ฅด๊ฒŒ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ์–ด์š”. ๋˜, ์ด๋ฏธ์ง€๋‚˜ ์งˆ๋ฌธ์˜ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ๋ฏธ๋ฆฌ ์ถ”์ถœํ•ด์„œ ์ €์žฅํ•ด๋‘๋ฉด ํ•™์Šต ์†๋„๋ฅผ ๋” ๋†’์ผ ์ˆ˜ ์žˆ์ฃ .

5. ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค ๐ŸŽ›๏ธ

๋งˆ์ง€๋ง‰์œผ๋กœ, ์‚ฌ์šฉ์ž๊ฐ€ ์‹œ์Šคํ…œ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ ํ•„์š”ํ•ด์š”. ์ด๊ฑด ์›น ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์ด ๋  ์ˆ˜๋„ ์žˆ๊ณ , ๋ชจ๋ฐ”์ผ ์•ฑ์ด ๋  ์ˆ˜๋„ ์žˆ์ฃ . ์žฌ๋Šฅ๋„ท ๊ฐ™์€ ํ”Œ๋žซํผ์— ํ†ตํ•ฉ๋œ๋‹ค๋ฉด, ๊ธฐ์กด ์›น์‚ฌ์ดํŠธ๋‚˜ ์•ฑ์— VQA ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•˜๋Š” ํ˜•ํƒœ๊ฐ€ ๋˜๊ฒ ๋„ค์š”.

๊ฐ„๋‹จํ•œ ์›น ์ธํ„ฐํŽ˜์ด์Šค์˜ ์˜ˆ์‹œ๋ฅผ ๋ณผ๊นŒ์š”? Flask๋ฅผ ์‚ฌ์šฉํ•œ ํŒŒ์ด์ฌ ๋ฐฑ์—”๋“œ์™€ HTML/JavaScript ํ”„๋ก ํŠธ์—”๋“œ๋กœ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ์–ด์š”:

from flask import Flask, request, jsonify
import torch
from PIL import Image
from model import VQAModel  # ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“  VQA ๋ชจ๋ธ

app = Flask(__name__)
model = VQAModel.load_from_checkpoint("path/to/checkpoint.ckpt")

@app.route('/predict', methods=['POST'])
def predict():
    image = Image.open(request.files['image'])
    question = request.form['question']
    
    # ์ด๋ฏธ์ง€์™€ ์งˆ๋ฌธ์„ ๋ชจ๋ธ ์ž…๋ ฅ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜
    image_tensor = preprocess_image(image)
    question_tensor = preprocess_question(question)
    
    # ๋ชจ๋ธ๋กœ ์˜ˆ์ธก
    with torch.no_grad():
        answer = model(image_tensor, question_tensor)
    
    return jsonify({'answer': answer})

if __name__ == '__main__':
    app.run(debug=True)

์ด ์ฝ”๋“œ๋Š” '/predict' ์—”๋“œํฌ์ธํŠธ๋ฅผ ๋งŒ๋“ค์–ด์„œ ์ด๋ฏธ์ง€์™€ ์งˆ๋ฌธ์„ ๋ฐ›์•„ ๋‹ต๋ณ€์„ ๋ฐ˜ํ™˜ํ•ด์š”. ํ”„๋ก ํŠธ์—”๋“œ์—์„œ๋Š” ์ด ์—”๋“œํฌ์ธํŠธ๋กœ ์š”์ฒญ์„ ๋ณด๋‚ด๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋ฐ›์•„ ํ™”๋ฉด์— ํ‘œ์‹œํ•˜๋ฉด ๋˜์ฃ .

์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค๋Š” ๋‹จ์ˆœํžˆ ๊ธฐ๋Šฅ๋งŒ ์ œ๊ณตํ•˜๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ, ์‚ฌ์šฉ์ž ๊ฒฝํ—˜(UX)๋„ ์ค‘์š”ํ•ด์š”. ์ง๊ด€์ ์ด๊ณ  ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฌ์šด ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ๋งŒ๋“ค์–ด์•ผ ํ•ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, ๋“œ๋ž˜๊ทธ ์•ค ๋“œ๋กญ์œผ๋กœ ์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•˜๊ฑฐ๋‚˜, ์Œ์„ฑ ์ธ์‹์œผ๋กœ ์งˆ๋ฌธ์„ ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๋“ฑ์˜ ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•  ์ˆ˜ ์žˆ์ฃ .

์ž, ์—ฌ๊ธฐ๊นŒ์ง€ VQA ์‹œ์Šคํ…œ์˜ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋“ค์„ ์‚ดํŽด๋ดค์–ด์š”. ์ด ์š”์†Œ๋“ค์ด ์–ด๋–ป๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š”์ง€ ์ดํ•ดํ•˜์…จ๋‚˜์š”? ๐Ÿ˜Š ๋‹ค์Œ ์„น์…˜์—์„œ๋Š” ์ด ์š”์†Œ๋“ค์„ ์–ด๋–ป๊ฒŒ ์กฐํ•ฉํ•ด์„œ ์‹ค์ œ ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๋Š”์ง€ ์•Œ์•„๋ณผ ๊ฑฐ์˜ˆ์š”. ์ค€๋น„๋˜์…จ๋‚˜์š”? Let's go! ๐Ÿš€

๐Ÿ› ๏ธ VQA ์‹œ์Šคํ…œ ๊ตฌํ˜„ํ•˜๊ธฐ: ๋‹จ๊ณ„๋ณ„ ๊ฐ€์ด๋“œ

์ž, ์ด์ œ ๋ณธ๊ฒฉ์ ์œผ๋กœ VQA ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•ด๋ณผ ๊ฑฐ์˜ˆ์š”. ๋งˆ์น˜ ๋ ˆ์‹œํ”ผ๋ฅผ ๋”ฐ๋ผ ์š”๋ฆฌ๋ฅผ ํ•˜๋“ฏ์ด, ๋‹จ๊ณ„๋ณ„๋กœ ์ฐจ๊ทผ์ฐจ๊ทผ ๋งŒ๋“ค์–ด๋ณผ๊ฒŒ์š”. ์ค€๋น„๋˜์…จ๋‚˜์š”? ๊ทธ๋Ÿผ ์‹œ์ž‘ํ•ด๋ณผ๊นŒ์š”? ๐Ÿฅณ

Step 1: ๊ฐœ๋ฐœ ํ™˜๊ฒฝ ์„ค์ • ๐Ÿ–ฅ๏ธ

๋จผ์ € ํ•„์š”ํ•œ ๋„๊ตฌ๋“ค์„ ์ค€๋น„ํ•ด์•ผ ํ•ด์š”. ํŒŒ์ด์ฌ๊ณผ PyTorch๋ฅผ ์ฃผ๋กœ ์‚ฌ์šฉํ•  ๊ฑฐ์˜ˆ์š”. ์•„๋‚˜์ฝ˜๋‹ค(Anaconda)๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ํ™˜๊ฒฝ ์„ค์ •์ด ๋” ์‰ฌ์›Œ์š”.

  1. ์•„๋‚˜์ฝ˜๋‹ค ์„ค์น˜: ์•„๋‚˜์ฝ˜๋‹ค ๊ณต์‹ ์‚ฌ์ดํŠธ์—์„œ ๋‹ค์šด๋กœ๋“œํ•˜์„ธ์š”.
  2. ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ ์ƒ์„ฑ:
    conda create -n vqa_env python=3.8
    conda activate vqa_env
  3. ํ•„์š”ํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์„ค์น˜:
    conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
    pip install transformers pillow matplotlib nltk

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๊ธฐ๋ณธ์ ์ธ ๊ฐœ๋ฐœ ํ™˜๊ฒฝ์ด ์ค€๋น„๋ผ์š”. ๐Ÿ‘

Step 2: ๋ฐ์ดํ„ฐ ์ค€๋น„ ๐Ÿ“Š

VQA ์‹œ์Šคํ…œ์„ ํ•™์Šต์‹œํ‚ค๋ ค๋ฉด ๋Œ€๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•ด์š”. ์—ฌ๊ธฐ์„œ๋Š” VQA Dataset์„ ์‚ฌ์šฉํ•ด๋ณผ๊ฒŒ์š”.

  1. ๋ฐ์ดํ„ฐ ๋‹ค์šด๋กœ๋“œ:
    wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Questions_Train_mscoco.zip
    wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Annotations_Train_mscoco.zip
    unzip v2_Questions_Train_mscoco.zip
    unzip v2_Annotations_Train_mscoco.zip
  2. ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ:
    import json
    import os
    from PIL import Image
    import torch
    from torchvision import transforms
    from transformers import BertTokenizer
    
    def load_data(questions_file, annotations_file, image_dir):
        with open(questions_file, 'r') as f:
            questions = json.load(f)['questions']
        with open(annotations_file, 'r') as f:
            annotations = json.load(f)['annotations']
        
        data = []
        for q, a in zip(questions, annotations):
            image_path = os.path.join(image_dir, f"COCO_train2014_{q['image_id']:012d}.jpg")
            data.append({
                'image_path': image_path,
                'question': q['question'],
                'answer': a['multiple_choice_answer']
            })
        return data
    
    data = load_data('v2_OpenEnded_mscoco_train2014_questions.json',
                     'v2_mscoco_train2014_annotations.json',
                     'train2014')
    
    # ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    
    # ํ…์ŠคํŠธ ์ „์ฒ˜๋ฆฌ
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    
    def preprocess_data(item):
        image = Image.open(item['image_path']).convert('RGB')
        image = transform(image)
        
        question = tokenizer(item['question'], padding='max_length', max_length=20, truncation=True, return_tensors='pt')
        
        return {
            'image': image,
            'question': question['input_ids'].squeeze(0),
            'answer': item['answer']
        }
    
    preprocessed_data = [preprocess_data(item) for item in data]

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ฐ์ดํ„ฐ๊ฐ€ ์ค€๋น„๋ผ์š”. ์ด๋ฏธ์ง€๋Š” CNN์— ๋งž๊ฒŒ ํฌ๊ธฐ๋ฅผ ์กฐ์ •ํ•˜๊ณ  ์ •๊ทœํ™”ํ–ˆ๊ณ , ์งˆ๋ฌธ์€ BERT ํ† ํฌ๋‚˜์ด์ €๋ฅผ ์‚ฌ์šฉํ•ด ํ† ํฐํ™”ํ–ˆ์–ด์š”. ๐Ÿ‘€

Step 3: ๋ชจ๋ธ ๊ตฌํ˜„ ๐Ÿง 

์ด์ œ VQA ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•ด๋ณผ ๊ฑฐ์˜ˆ์š”. CNN, BERT, ๊ทธ๋ฆฌ๊ณ  ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์กฐํ•ฉํ•ด์„œ ๋งŒ๋“ค์–ด๋ณผ๊ฒŒ์š”.

import torch
import torch.nn as nn
from torchvision.models import resnet50
from transformers import BertModel

class VQAModel(nn.Module):
    def __init__(self, num_classes):
        super(VQAModel, self).__init__()
        
        # ์ด๋ฏธ์ง€ ์ธ์ฝ”๋” (ResNet50)
        self.image_encoder = resnet50(pretrained=True)
        self.image_encoder.fc = nn.Identity()  # ๋งˆ์ง€๋ง‰ fully connected ์ธต ์ œ๊ฑฐ
        
        # ์งˆ๋ฌธ ์ธ์ฝ”๋” (BERT)
        self.question_encoder = BertModel.from_pretrained('bert-base-uncased')
        
        # ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜
        self.attention = nn.MultiheadAttention(embed_dim=768, num_heads=8)
        
        # ๋ถ„๋ฅ˜๊ธฐ
        self.classifier = nn.Sequential(
            nn.Linear(768 * 2, 1024),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(1024, num_classes)
        )
        
    def forward(self, image, question):
        # ์ด๋ฏธ์ง€ ์ธ์ฝ”๋”ฉ
        image_features = self.image_encoder(image)  # [batch_size, 2048]
        image_features = image_features.unsqueeze(1)  # [batch_size, 1, 2048]
        
        # ์งˆ๋ฌธ ์ธ์ฝ”๋”ฉ
        question_features = self.question_encoder(question)[0]  # [batch_size, seq_len, 768]
        
        # ์–ดํ…์…˜ ์ ์šฉ
        attn_output, _ = self.attention(question_features, image_features, image_features)
        
        # ํŠน์ง• ๊ฒฐํ•ฉ
        combined_features = torch.cat([attn_output.mean(dim=1), question_features.mean(dim=1)], dim=1)
        
        # ๋ถ„๋ฅ˜
        output = self.classifier(combined_features)
        
        return output

model = VQAModel(num_classes=1000)  # ๋‹ต๋ณ€ ํ›„๋ณด๊ฐ€ 1000๊ฐœ๋ผ๊ณ  ๊ฐ€์ •

์ด ๋ชจ๋ธ์€ ResNet50์„ ์‚ฌ์šฉํ•ด ์ด๋ฏธ์ง€๋ฅผ ์ธ์ฝ”๋”ฉํ•˜๊ณ , BERT๋ฅผ ์‚ฌ์šฉํ•ด ์งˆ๋ฌธ์„ ์ธ์ฝ”๋”ฉํ•ด์š”. ๊ทธ๋ฆฌ๊ณ  ๋ฉ€ํ‹ฐํ—ค๋“œ ์–ดํ…์…˜์„ ์‚ฌ์šฉํ•ด ์ด๋ฏธ์ง€์™€ ์งˆ๋ฌธ ์ •๋ณด๋ฅผ ๊ฒฐํ•ฉํ•˜์ฃ . ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ํ†ตํ•ด ๋‹ต๋ณ€์„ ์˜ˆ์ธกํ•ด์š”. ๐Ÿ˜Ž

Step 4: ํ•™์Šต ๋ฃจํ”„ ๊ตฌํ˜„ ๐Ÿ‹๏ธโ€โ™€๏ธ

๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ฌ ์ฐจ๋ก€์˜ˆ์š”. PyTorch์˜ DataLoader๋ฅผ ์‚ฌ์šฉํ•ด์„œ ํšจ์œจ์ ์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ค๊ณ , ํ•™์Šต ๋ฃจํ”„๋ฅผ ๊ตฌํ˜„ํ•ด๋ณผ๊ฒŒ์š”.

from torch.utils.data import Dataset, DataLoader
import torch.optim as optim

class VQADataset(Dataset):
    def __init__(self, data):
        self.data = data
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        return self.data[idx]

# ๋ฐ์ดํ„ฐ์…‹๊ณผ ๋ฐ์ดํ„ฐ๋กœ๋” ์ƒ์„ฑ
dataset = VQADataset(preprocessed_data)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

# ์†์‹ค ํ•จ์ˆ˜์™€ ์˜ตํ‹ฐ๋งˆ์ด์ € ์ •์˜
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001)

# ํ•™์Šต ๋ฃจํ”„
num_epochs = 10
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

for epoch in range(num_epochs):
    model.train()
    total_loss = 0
    for batch in dataloader:
        images = batch['image'].to(device)
        questions = batch['question'].to(device)
        answers = batch['answer'].to(device)
        
        optimizer.zero_grad()
        outputs = model(images, questions)
        loss = criterion(outputs, answers)
        loss.backward()
        optimizer.step()
        
        total_loss += loss.item()
    
    print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss/len(dataloader):.4f}")

# ๋ชจ๋ธ ์ €์žฅ
torch.save(model.state_dict(), 'vqa_model.pth')

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ชจ๋ธ์ด ํ•™์Šต๋ผ์š”. ์‹ค์ œ๋กœ๋Š” ๋” ๋งŽ์€ ์—ํญ(epoch)๊ณผ ๋” ํฐ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šตํ•ด์•ผ ํ•˜์ง€๋งŒ, ๊ธฐ๋ณธ์ ์ธ ๊ตฌ์กฐ๋Š” ์ด๋Ÿฐ ์‹์ด์—์š”. ๐Ÿ’ช

Step 5: ์ถ”๋ก  ๋ฐ ํ‰๊ฐ€ ๐Ÿ”

ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด ์ƒˆ๋กœ์šด ์ด๋ฏธ์ง€์™€ ์งˆ๋ฌธ์— ๋Œ€ํ•ด ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๊ณ , ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•ด๋ณผ ๊ฑฐ์˜ˆ์š”.

import matplotlib.pyplot as plt

def predict(model, image_path, question):
    model.eval()
    image = Image.open(image_path).convert('RGB')
    image = transform(image).unsqueeze(0).to(device)
    question = tokenizer(question, padding='max_length', max_length=20, truncation=True, return_tensors='pt')['input_ids'].to(device)
    
    with torch.no_grad():
        output = model(image, question)
    
    # ์—ฌ๊ธฐ์„œ๋Š” ๊ฐ„๋‹จํžˆ ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ์˜ ํด๋ž˜์Šค๋ฅผ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
    # ์‹ค์ œ๋กœ๋Š” ํด๋ž˜์Šค ์ธ๋ฑ์Šค๋ฅผ ๋‹ต๋ณ€ ํ…์ŠคํŠธ๋กœ ๋งคํ•‘ํ•˜๋Š” ๊ณผ์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
    predicted_class = output.argmax().item()
    return predicted_class

# ์˜ˆ์‹œ ์ด๋ฏธ์ง€์™€ ์งˆ๋ฌธ์œผ๋กœ ํ…Œ์ŠคํŠธ
test_image_path = 'path/to/test/image.jpg'
test_question = "What color is the cat?"

answer = predict(model, test_image_path, test_question)
print(f"Question: {test_question}")
print(f"Predicted answer: {answer}")

# ์ด๋ฏธ์ง€ ํ‘œ์‹œ
plt.imshow(Image.open(test_image_path))
plt.axis('off')
plt.title(f"Q: {test_question}\nA: {answer}")
plt.show()

# ๋ชจ๋ธ ํ‰๊ฐ€
def evaluate(model, dataloader):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for batch in dataloader:
            images = batch['image'].to(device)
            questions = batch['question'].to(device)
            answers = batch['answer'].to(device)
            
            outputs = model(images, questions)
            _, predicted = torch.max(outputs.data, 1)
            total += answers.size(0)
            correct += (predicted == answers).sum().item()
    
    accuracy = 100 * correct / total
    print(f"Accuracy: {accuracy:.2f}%")

# ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ๋กœ๋” ์ƒ์„ฑ (์‹ค์ œ๋กœ๋Š” ๋ณ„๋„์˜ ๊ฒ€์ฆ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค)
eval_dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
evaluate(model, eval_dataloader)

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ชจ๋ธ์˜ ์ถ”๋ก  ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ณ  ์ „์ฒด์ ์ธ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์–ด์š”. ์‹ค์ œ ํ”„๋กœ์ ํŠธ์—์„œ๋Š” ๋ณ„๋„์˜ ๊ฒ€์ฆ ์„ธํŠธ์™€ ํ…Œ์ŠคํŠธ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์„ ์žŠ์ง€ ๋งˆ์„ธ์š”! ๐Ÿ“Š

Step 6: ์›น ์ธํ„ฐํŽ˜์ด์Šค ๊ตฌํ˜„ ๐ŸŒ

๋งˆ์ง€๋ง‰์œผ๋กœ, ์‚ฌ์šฉ์ž๊ฐ€ ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์›น ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ๋งŒ๋“ค์–ด๋ณผ๊ฒŒ์š”. Flask๋ฅผ ์‚ฌ์šฉํ•ด์„œ ๊ฐ„๋‹จํ•œ ์›น ์„œ๋ฒ„๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ , HTML๊ณผ JavaScript๋กœ ํ”„๋ก ํŠธ์—”๋“œ๋ฅผ ๋งŒ๋“ค์–ด๋ณผ ๊ฑฐ์˜ˆ์š”.

# app.py
from flask import Flask, request, jsonify, render_template
import torch
from PIL import Image
from torchvision import transforms
from transformers import BertTokenizer
from model import VQAModel  # ์šฐ๋ฆฌ๊ฐ€ ์ •์˜ํ•œ ๋ชจ๋ธ

app = Flask(__name__)

# ๋ชจ๋ธ ๋กœ๋“œ
model = VQAModel(num_classes=1000)
model.load_state_dict(torch.load('vqa_model.pth'))
model.eval()

# ์ „์ฒ˜๋ฆฌ ํ•จ์ˆ˜๋“ค
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

@app.route('/')
def home():
    return render_template('index.html')

@app.route('/predict', methods=['POST'])
def predict():
    if 'image' not in request.files:
        return jsonify({'error': 'No image provided'}), 400
    
    image = Image.open(request.files['image']).convert('RGB')
    question = request.form['question']
    
    # ์ด๋ฏธ์ง€์™€ ์งˆ๋ฌธ ์ „์ฒ˜๋ฆฌ
    image = transform(image).unsqueeze(0)
    question = tokenizer(question, padding='max_length', max_length=20, truncation=True, return_tensors='pt')['input_ids']
    
    # ์˜ˆ์ธก
    with torch.no_grad():
        output = model(image, question)
    
    predicted_class = output.argmax().item()
    # ์—ฌ๊ธฐ์„œ๋Š” ํด๋ž˜์Šค ์ธ๋ฑ์Šค๋ฅผ ๋ฐ˜ํ™˜ํ•˜์ง€๋งŒ, ์‹ค์ œ๋กœ๋Š” ์ด๋ฅผ ๋‹ต๋ณ€ ํ…์ŠคํŠธ๋กœ ๋ณ€ํ™˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
    
    return jsonify({'answer': predicted_class})

if __name__ == '__main__':
    app.run(debug=True)

๊ทธ๋ฆฌ๊ณ  HTML ํ…œํ”Œ๋ฆฟ์„ ๋งŒ๋“ค์–ด๋ณผ๊ฒŒ์š”:

<!-- templates/index.html -->
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>VQA Demo</title>
    <style>
        body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
        #imagePreview { max-width: 100%; margin-top: 20px; }
    </style>
</head>
<body>
    <h1>Visual Question Answering Demo</h1>
    <form id="vqaForm">
        <input type="file" id="imageInput" accept="image/*" required>
        <br><br>
        <input type="text" id="questionInput" placeholder="Ask a question about the image" required>
        <br><br>
        <button type="submit">Get Answer</button>
    </form>
    <img id="imagePreview">
    <p id="result"></p>

    <script>
        document.getElementById('vqaForm').addEventListener('submit', async (e) => {
            e.preventDefault();
            const formData = new FormData();
            formData.append('image', document.getElementById('imageInput').files[0]);
            formData.append('question', document.getElementById('questionInput').value);

            const response = await fetch('/predict', {
                method: 'POST',
                body: formData
            });
            const data = await response.json();
            document.getElementById('result').textContent = `Answer: ${data.answer}`;
        });

        document.getElementById('imageInput').addEventListener('change', (e) => {
            const file = e.target.files[0];
            const reader = new FileReader();
            reader.onload = (e) => {
                document.getElementById('imagePreview').src = e.target.result;
            };
            reader.readAsDataURL(file);
        });
    </script>
</body>
</html>

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์‚ฌ์šฉ์ž๊ฐ€ ์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•˜๊ณ  ์งˆ๋ฌธ์„ ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ„๋‹จํ•œ ์›น ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ ์™„์„ฑ๋ผ์š”. Flask ์„œ๋ฒ„๋ฅผ ์‹คํ–‰ํ•˜๊ณ  ๋ธŒ๋ผ์šฐ์ €์—์„œ ์ ‘์†ํ•˜๋ฉด VQA ์‹œ์Šคํ…œ์„ ์ง์ ‘ ์‚ฌ์šฉํ•ด๋ณผ ์ˆ˜ ์žˆ์–ด์š”! ๐ŸŽ‰

์ž, ์—ฌ๊ธฐ๊นŒ์ง€ VQA ์‹œ์Šคํ…œ์˜ ์ „์ฒด์ ์ธ ๊ตฌํ˜„ ๊ณผ์ •์„ ์‚ดํŽด๋ดค์–ด์š”. ๋ฌผ๋ก  ์ด๊ฑด ๊ธฐ๋ณธ์ ์ธ ๊ตฌํ˜„์ด๊ณ , ์‹ค์ œ๋กœ ๊ณ ์„ฑ๋Šฅ์˜ ์‹œ์Šคํ…œ์„ ๋งŒ๋“ค๋ ค๋ฉด ๋” ๋งŽ์€ ์ž‘์—…์ด ํ•„์š”ํ•ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด:

  • ๋” ํฐ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šตํ•˜๊ธฐ
  • ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜ ๊ฐœ์„ ํ•˜๊ธฐ (์˜ˆ: ๋” ๊ฐ•๋ ฅํ•œ ๋ฐฑ๋ณธ ๋„คํŠธ์›Œํฌ ์‚ฌ์šฉ)
  • ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹
  • ์•™์ƒ๋ธ” ๊ธฐ๋ฒ• ์ ์šฉ
  • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ธฐ๋ฒ• ์‚ฌ์šฉ
  • ๋‹ค๊ตญ์–ด ์ง€์›

ํ•˜์ง€๋งŒ ์ด ๊ธฐ๋ณธ ๊ตฌํ˜„์„ ํ†ตํ•ด VQA ์‹œ์Šคํ…œ์˜ ํ•ต์‹ฌ ๊ฐœ๋…๊ณผ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜์‹ค ์ˆ˜ ์žˆ์„ ๊ฑฐ์˜ˆ์š”. ์—ฌ๋Ÿฌ๋ถ„์˜ ํ”„๋กœ์ ํŠธ์— ๋งž๊ฒŒ ์ด๋ฅผ ํ™•์žฅํ•˜๊ณ  ๊ฐœ์„ ํ•ด ๋‚˜๊ฐ€๋ฉด ๋ผ์š”. ํ™”์ดํŒ…! ๐Ÿ’ช๐Ÿ˜„

๐Ÿš€ VQA ์‹œ์Šคํ…œ์˜ ๋ฏธ๋ž˜์™€ ์‘์šฉ ๋ถ„์•ผ

์ž, ์ด์ œ ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“  VQA ์‹œ์Šคํ…œ์ด ์–ด๋–ค ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„์ง€, ๊ทธ๋ฆฌ๊ณ  ์•ž์œผ๋กœ ์–ด๋–ป๊ฒŒ ๋ฐœ์ „ํ• ์ง€ ์‚ดํŽด๋ณผ๊นŒ์š”? ๐Ÿค”

1. ๊ต์œก ๋ถ„์•ผ ๐Ÿ“š

VQA ์‹œ์Šคํ…œ์€ ๊ต์œก ๋ถ„์•ผ์—์„œ ํ˜์‹ ์ ์ธ ๋„๊ตฌ๊ฐ€ ๋  ์ˆ˜ ์žˆ์–ด์š”.

  • ํ•™์ƒ๋“ค์ด ๊ต๊ณผ์„œ๋‚˜ ํ•™์Šต ์ž๋ฃŒ์˜ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ์งˆ๋ฌธํ•˜๋ฉด ์ฆ‰์‹œ ๋‹ต๋ณ€์„ ๋ฐ›์„ ์ˆ˜ ์žˆ์–ด์š”.
  • ์‹œ๊ฐ์  ํ•™์Šต ์ž๋ฃŒ์˜ ์ดํ•ด๋„๋ฅผ ๋†’์ด๋Š” ๋ฐ ๋„์›€์ด ๋  ๊ฑฐ์˜ˆ์š”.
  • ์˜ˆ๋ฅผ ๋“ค์–ด, ์ƒ๋ฌผํ•™ ์ˆ˜์—…์—์„œ ์„ธํฌ ๊ตฌ์กฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ์งˆ๋ฌธํ•˜๋ฉด ๊ฐ ๋ถ€๋ถ„์˜ ๊ธฐ๋Šฅ์„ ์„ค๋ช…ํ•ด์ค„ ์ˆ˜ ์žˆ์ฃ .

2. ์˜๋ฃŒ ๋ถ„์•ผ ๐Ÿฅ

์˜๋ฃŒ ์˜์ƒ ๋ถ„์„์— VQA ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜๋ฉด ์ •๋ง ํฐ ๋„์›€์ด ๋  ๊ฑฐ์˜ˆ์š”.

  • X-ray, MRI, CT ์Šค์บ” ๋“ฑ์˜ ์˜๋ฃŒ ์˜์ƒ์— ๋Œ€ํ•ด ์˜์‚ฌ๋“ค์ด ์งˆ๋ฌธ์„ ํ•  ์ˆ˜ ์žˆ์–ด์š”.
  • ์˜ˆ๋ฅผ ๋“ค์–ด, "์ด MRI ์˜์ƒ์—์„œ ์ข…์–‘์˜ ํฌ๊ธฐ๋Š” ์–ผ๋งˆ์ธ๊ฐ€์š”?" ๊ฐ™์€ ์งˆ๋ฌธ์— ๋‹ตํ•  ์ˆ˜ ์žˆ์ฃ .
  • ์ด๋ฅผ ํ†ตํ•ด ์ง„๋‹จ ์†๋„๋ฅผ ๋†’์ด๊ณ  ์ •ํ™•๋„๋ฅผ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์„ ๊ฑฐ์˜ˆ์š”.

3. ์ „์ž์ƒ๊ฑฐ๋ž˜ ๐Ÿ›’

์˜จ๋ผ์ธ ์‡ผํ•‘ ๊ฒฝํ—˜์„ ๋”์šฑ ํ’๋ถ€ํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด์š”.

  • ๊ณ ๊ฐ์ด ์ œํ’ˆ ์ด๋ฏธ์ง€๋ฅผ ๋ณด๊ณ  "์ด ์˜ท์˜ ์†Œ์žฌ๋Š” ๋ญ”๊ฐ€์š”?" ๋˜๋Š” "์ด ๊ฐ€๊ตฌ๋Š” ์–ด๋–ค ์Šคํƒ€์ผ์ธ๊ฐ€์š”?" ๊ฐ™์€ ์งˆ๋ฌธ์„ ํ•  ์ˆ˜ ์žˆ์–ด์š”.
  • ์ œํ’ˆ ์„ค๋ช…์„ ์ฝ์ง€ ์•Š๊ณ ๋„ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ๋น ๋ฅด๊ฒŒ ์–ป์„ ์ˆ˜ ์žˆ์ฃ .
  • ์ด๋Š” ๊ตฌ๋งค ๊ฒฐ์ •์„ ๋•๊ณ  ๊ณ ๊ฐ ๋งŒ์กฑ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์–ด์š”.

4. ๋ณด์•ˆ ๋ฐ ๊ฐ์‹œ ์‹œ์Šคํ…œ ๐Ÿ”’

CCTV ์˜์ƒ ๋ถ„์„์— VQA ์‹œ์Šคํ…œ์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ์–ด์š”.

  • "์ด ์˜์ƒ์—์„œ ์ˆ˜์ƒํ•œ ํ–‰๋™์„ ํ•˜๋Š” ์‚ฌ๋žŒ์ด ์žˆ๋‚˜์š”?" ๊ฐ™์€ ์งˆ๋ฌธ์— ๋‹ตํ•  ์ˆ˜ ์žˆ์–ด์š”.
  • ๋Œ€๋Ÿ‰์˜ ์˜์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๋ถ„์„ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋  ๊ฑฐ์˜ˆ์š”.
  • ๋‹จ, ํ”„๋ผ์ด๋ฒ„์‹œ ๋ฌธ์ œ์— ์ฃผ์˜ํ•ด์•ผ ํ•ด์š”.

5. ์ ‘๊ทผ์„ฑ ๊ฐœ์„  โ™ฟ

์‹œ๊ฐ ์žฅ์• ์ธ์„ ์œ„ํ•œ ๋„๊ตฌ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์–ด์š”.

  • ์ฃผ๋ณ€ ํ™˜๊ฒฝ์„ ์ดฌ์˜ํ•˜๊ณ  "๋‚ด ์•ž์— ๋ฌด์—‡์ด ์žˆ๋‚˜์š”?" ๊ฐ™์€ ์งˆ๋ฌธ์„ ํ•  ์ˆ˜ ์žˆ์–ด์š”.
  • ์ด๋ฏธ์ง€๋‚˜ ๋ฌธ์„œ์˜ ๋‚ด์šฉ์„ ์„ค๋ช…ํ•ด์ฃผ๋Š” ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ์ฃ .
  • ์ด๋ฅผ ํ†ตํ•ด ์‹œ๊ฐ ์žฅ์• ์ธ์˜ ์ผ์ƒ์ƒํ™œ๊ณผ ์ •๋ณด ์ ‘๊ทผ์„ฑ์„ ํฌ๊ฒŒ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์–ด์š”.

์ด๋Ÿฐ ์‘์šฉ ๋ถ„์•ผ๋“ค์„ ์ƒ๊ฐํ•˜๋ฉด ์ •๋ง ํฅ๋ฏธ์ง„์ง„ํ•˜์ง€ ์•Š๋‚˜์š”? ๐Ÿ˜ƒ ๊ทธ๋Ÿฐ๋ฐ VQA ๊ธฐ์ˆ ์ด ๋”์šฑ ๋ฐœ์ „ํ•˜๋ ค๋ฉด ์–ด๋–ค ๊ณผ์ œ๋“ค์„ ํ•ด๊ฒฐํ•ด์•ผ ํ• ๊นŒ์š”?

  • ๋‹ค๊ตญ์–ด ์ง€์›: ์ „ ์„ธ๊ณ„ ์‚ฌ์šฉ์ž๋“ค์„ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์–ธ์–ด๋กœ ์งˆ๋ฌธํ•˜๊ณ  ๋‹ต๋ณ€ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ด์š”.
  • ์ถ”๋ก  ๋Šฅ๋ ฅ ํ–ฅ์ƒ: ๋‹จ์ˆœํ•œ ์‚ฌ์‹ค ํ™•์ธ์„ ๋„˜์–ด, ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ์ถ”๋ก ์ด ๊ฐ€๋Šฅํ•ด์•ผ ํ•ด์š”.
  • ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ: ๋Œ€์šฉ๋Ÿ‰ ์˜์ƒ ์ŠคํŠธ๋ฆผ์—์„œ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์งˆ์˜์‘๋‹ต์ด ๊ฐ€๋Šฅํ•ด์•ผ ํ•ด์š”.
  • ์„ค๋ช… ๊ฐ€๋Šฅ์„ฑ: AI๊ฐ€ ์™œ ๊ทธ๋Ÿฐ ๋‹ต๋ณ€์„ ํ–ˆ๋Š”์ง€ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ด์š”.
  • ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ†ตํ•ฉ: ์ด๋ฏธ์ง€๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋น„๋””์˜ค, ์˜ค๋””์˜ค ๋“ฑ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•จ๊ป˜ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ด์š”.

์ด๋Ÿฐ ๊ณผ์ œ๋“ค์„ ํ•ด๊ฒฐํ•ด ๋‚˜๊ฐ€๋ฉด์„œ VQA ์‹œ์Šคํ…œ์€ ์ ์  ๋” ๊ฐ•๋ ฅํ•ด์ง€๊ณ  ์šฐ๋ฆฌ ์ผ์ƒ ๊นŠ์ˆ™์ด ์ž๋ฆฌ ์žก๊ฒŒ ๋  ๊ฑฐ์˜ˆ์š”. ์—ฌ๋Ÿฌ๋ถ„๋„ ์ด ํฅ๋ฏธ์ง„์ง„ํ•œ ์—ฌ์ •์— ๋™์ฐธํ•˜๊ณ  ์‹ถ์ง€ ์•Š๋‚˜์š”? ๐Ÿš€

VQA ๊ธฐ์ˆ ์€ AI์™€ ์ธ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•œ ๋‹จ๊ณ„ ๋” ๋ฐœ์ „์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด์š”. ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“  ์ด ์ž‘์€ ํ”„๋กœ์ ํŠธ๊ฐ€ ์–ด์ฉŒ๋ฉด ๋ฏธ๋ž˜์˜ ํฐ ํ˜์‹ ์œผ๋กœ ์ด์–ด์งˆ ์ˆ˜๋„ ์žˆ์ฃ . ์—ฌ๋Ÿฌ๋ถ„์˜ ์ƒ์ƒ๋ ฅ๊ณผ ์ฐฝ์˜๋ ฅ์œผ๋กœ ์ด ๊ธฐ์ˆ ์„ ๋”์šฑ ๋ฐœ์ „์‹œ์ผœ ๋‚˜๊ฐ€๊ธธ ๊ธฐ๋Œ€ํ•ด์š”! ๐Ÿ’–