๐ŸŽต ๋”ฅ๋Ÿฌ๋‹์œผ๋กœ ์Œ์•…์„ ๋งŒ๋“ค์–ด๋ณด์ž! ๐Ÿค–

์ฝ˜ํ…์ธ  ๋Œ€ํ‘œ ์ด๋ฏธ์ง€ - ๐ŸŽต ๋”ฅ๋Ÿฌ๋‹์œผ๋กœ ์Œ์•…์„ ๋งŒ๋“ค์–ด๋ณด์ž! ๐Ÿค–

 

 

์•ˆ๋…•ํ•˜์„ธ์š”, ์Œ์•… ๋•ํ›„๋“ค๊ณผ ์ฝ”๋”ฉ ๋งˆ๋‹ˆ์•„๋“ค! ์˜ค๋Š˜์€ ์ •๋ง ํฅ๋ฏธ์ง„์ง„ํ•œ ์ฃผ์ œ๋กœ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ํ•จ๊ป˜ํ•  ๊ฑฐ์˜ˆ์š”. ๋ฐ”๋กœ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œ์•… ์ƒ์„ฑ ๋ชจ๋ธ์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๋Š” ์‹œ๊ฐ„์„ ๊ฐ€์ ธ๋ณผ ๊ฑฐ๋ž๋‹ˆ๋‹ค. ๐ŸŽ‰

์—ฌ๋Ÿฌ๋ถ„, ํ˜น์‹œ ์ด๋Ÿฐ ์ƒ๊ฐ ํ•ด๋ณด์‹  ์  ์žˆ๋‚˜์š”? "์•„, ๋‚ด๊ฐ€ ์ข‹์•„ํ•˜๋Š” ์•„ํ‹ฐ์ŠคํŠธ์˜ ์ƒˆ ๊ณก์ด ๋‚˜์™”์œผ๋ฉด ์ข‹๊ฒ ๋‹ค!" ๋˜๋Š” "์ด ๋…ธ๋ž˜์˜ ํ›„์†๊ณก์€ ์–ด๋–ค ๋Š๋‚Œ์ผ๊นŒ?" ์ด๋Ÿฐ ์ƒ๊ฐ๋“ค, ์ด์ œ ํ˜„์‹ค์ด ๋  ์ˆ˜ ์žˆ์–ด์š”! ์–ด๋–ป๊ฒŒ์š”? ๋ฐ”๋กœ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์„ ์ด์šฉํ•ด์„œ ๋ง์ด์ฃ !

์˜ค๋Š˜ ์šฐ๋ฆฌ๋Š” ํ•จ๊ป˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œ์•… ์ƒ์„ฑ ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•ด๋ณด๋ฉด์„œ, ์ธ๊ณต์ง€๋Šฅ์ด ์–ด๋–ป๊ฒŒ ์Œ์•…์„ ๋งŒ๋“ค์–ด๋‚ด๋Š”์ง€ ์•Œ์•„๋ณผ ๊ฑฐ์˜ˆ์š”. ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ์Œ์•… ์žฌ๋Šฅ์„ ๊ณต์œ ํ•˜๋“ฏ์ด, ์šฐ๋ฆฌ๋„ AI์™€ ํ•จ๊ป˜ ์Œ์•… ์žฌ๋Šฅ์„ ๋‚˜๋ˆ ๋ณผ ๊ฑฐ๋ž๋‹ˆ๋‹ค! ๐Ÿ˜Ž

๐ŸŽผ ๋”ฅ๋Ÿฌ๋‹๊ณผ ์Œ์•…์˜ ๋งŒ๋‚จ, ์–ด๋–ค ๋Š๋‚Œ์ผ๊นŒ์š”?

์ž, ์—ฌ๋Ÿฌ๋ถ„! ๋”ฅ๋Ÿฌ๋‹์ด ์Œ์•…์„ ๋งŒ๋“ ๋‹ค๋‹ˆ, ์ข€ ์‹ ๊ธฐํ•˜์ง€ ์•Š๋‚˜์š”? ใ…‹ใ…‹ใ…‹ ๋งˆ์น˜ ๋กœ๋ด‡์ด ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ๋Š” ๋ชจ์Šต์„ ์ƒ์ƒํ•˜๋ฉด ์›ƒ๊ธฐ์ž–์•„์š”. ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ๋Š” ๊ทธ๋ ‡๊ฒŒ ๋‹จ์ˆœํ•˜์ง€ ์•Š์•„์š”. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์ˆ˜๋งŽ์€ ์Œ์•… ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๊ณ , ๊ทธ ํŒจํ„ด์„ ์ดํ•ดํ•œ ๋’ค์— ์ƒˆ๋กœ์šด ์Œ์•…์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฑฐ์ฃ .

์ด๊ฒŒ ๋ฐ”๋กœ ์Œ์•… ์ƒ์„ฑ AI์˜ ํ•ต์‹ฌ์ด์—์š”. ์šฐ๋ฆฌ๊ฐ€ ์นœ๊ตฌ๋“ค์ด๋ž‘ ๋…ธ๋ž˜ ๋งž์ถ”๊ธฐ ๊ฒŒ์ž„์„ ํ•  ๋•Œ์ฒ˜๋Ÿผ, AI๋„ ์Œ์•…์˜ ๊ทœ์น™๊ณผ ํŒจํ„ด์„ ๋ฐฐ์šฐ๋Š” ๊ฑฐ์˜ˆ์š”. ๊ทธ๋ฆฌ๊ณ  ๋‚˜์„œ ์ž๊ธฐ๋งŒ์˜ ๋ฐฉ์‹์œผ๋กœ ์ƒˆ๋กœ์šด ๊ณก์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฑฐ์ฃ . ์‹ ๊ธฐํ•˜์ง€ ์•Š๋‚˜์š”? ๐Ÿคฏ

์žฌ๋ฏธ์žˆ๋Š” ์‚ฌ์‹ค: ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ๋งŒ๋“  ์Œ์•… ์ค‘์—๋Š” ์‹ค์ œ๋กœ ์ธ๊ธฐ๋ฅผ ์–ป์€ ๊ณก๋“ค๋„ ์žˆ์–ด์š”! ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ์ˆจ์€ ์Œ์•… ์ธ์žฌ๋ฅผ ๋ฐœ๊ฒฌํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, AI๋„ ๋•Œ๋กœ๋Š” ๋†€๋ผ์šด ์Œ์•…์  ์žฌ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ต๋‹ˆ๋‹ค.

์ž, ์ด์ œ ๋ณธ๊ฒฉ์ ์œผ๋กœ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œ์•… ์ƒ์„ฑ ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•ด๋ณผ ํ…๋ฐ์š”. ์ค€๋น„๋˜์…จ๋‚˜์š”? ์—ฌ๋Ÿฌ๋ถ„์˜ ๋…ธํŠธ๋ถ์ด๋‚˜ ์ปดํ“จํ„ฐ๋ฅผ ๊บผ๋‚ด์„ธ์š”. ์šฐ๋ฆฌ๋Š” ์ง€๊ธˆ๋ถ€ํ„ฐ ์ฝ”๋”ฉ์˜ ์„ธ๊ณ„๋กœ ๋น ์ ธ๋“ค ๊ฑฐ์˜ˆ์š”! ๐Ÿ–ฅ๏ธ

๐Ÿ› ๏ธ ๋”ฅ๋Ÿฌ๋‹ ์Œ์•… ์ƒ์„ฑ๊ธฐ ๋งŒ๋“ค๊ธฐ: ์‹œ์ž‘ํ•ด๋ณผ๊นŒ์š”?

์ž, ์ด์ œ ์ง„์งœ ์‹œ์ž‘์ด์—์š”! ์šฐ๋ฆฌ์˜ ๋ชฉํ‘œ๋Š” ๊ฐ„๋‹จํ•ด์š”. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด์„œ ์ƒˆ๋กœ์šด ์Œ์•…์„ ์ƒ์„ฑํ•˜๋Š” ๊ฑฐ์ฃ . ์–ด๋–ป๊ฒŒ ํ•˜๋ƒ๊ณ ์š”? ์ฐจ๊ทผ์ฐจ๊ทผ ์„ค๋ช…ํ•ด๋“œ๋ฆด๊ฒŒ์š”!

1๋‹จ๊ณ„: ํ™˜๊ฒฝ ์„ค์ •ํ•˜๊ธฐ

๋จผ์ €, ์šฐ๋ฆฌ์—๊ฒŒ ํ•„์š”ํ•œ ๋„๊ตฌ๋“ค์„ ์ค€๋น„ํ•ด์•ผ ํ•ด์š”. ํŒŒ์ด์ฌ(Python)์„ ์‚ฌ์šฉํ•  ๊ฑฐ์˜ˆ์š”. ์™œ๋ƒ๊ณ ์š”? ํŒŒ์ด์ฌ์€ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋กœ์ ํŠธ์— ๋”ฑ์ด๊ฑฐ๋“ ์š”! ๊ฒŒ๋‹ค๊ฐ€ ์Œ์•… ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋“ค๋„ ๋งŽ์ด ์žˆ์–ด์„œ ํŽธ๋ฆฌํ•ด์š”.

ํ•„์š”ํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™์•„์š”:

  • TensorFlow (๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ)
  • Keras (TensorFlow ์œ„์—์„œ ๋™์ž‘ํ•˜๋Š” ๊ณ ์ˆ˜์ค€ API)
  • Music21 (์Œ์•… ๋ฐ ์Œํ‘œ ์ฒ˜๋ฆฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ)
  • Numpy (์ˆ˜์น˜ ๊ณ„์‚ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ)
  • Matplotlib (์‹œ๊ฐํ™” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ)

์ด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋“ค์„ ์„ค์น˜ํ•˜๋ ค๋ฉด, ํ„ฐ๋ฏธ๋„์ด๋‚˜ ๋ช…๋ น ํ”„๋กฌํ”„ํŠธ์—์„œ ๋‹ค์Œ ๋ช…๋ น์–ด๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”:


pip install tensorflow keras music21 numpy matplotlib
  

์„ค์น˜๊ฐ€ ์™„๋ฃŒ๋˜๋ฉด, ์šฐ๋ฆฌ์˜ ์Œ์•… ์ƒ์„ฑ ์—ฌ์ •์„ ์œ„ํ•œ ์ค€๋น„๋Š” ๋๋‚œ ๊ฑฐ์˜ˆ์š”! ๐ŸŽ‰

2๋‹จ๊ณ„: ๋ฐ์ดํ„ฐ ์ค€๋น„ํ•˜๊ธฐ

AI๊ฐ€ ์Œ์•…์„ ๋งŒ๋“ค๋ ค๋ฉด ๋ญ๊ฐ€ ํ•„์š”ํ• ๊นŒ์š”? ๋ฐ”๋กœ ๋งŽ์€ ์Œ์•… ๋ฐ์ดํ„ฐ์˜ˆ์š”! ์šฐ๋ฆฌ๋Š” MIDI ํŒŒ์ผ์„ ์‚ฌ์šฉํ•  ๊ฑฐ์˜ˆ์š”. MIDI ํŒŒ์ผ์€ ์Œ์•…์˜ ๋…ธํŠธ, ๋ฐ•์ž, ์•…๊ธฐ ๋“ฑ์˜ ์ •๋ณด๋ฅผ ๋‹ด๊ณ  ์žˆ์–ด์„œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ํ•™์Šตํ•˜๊ธฐ ์ข‹์•„์š”.

์–ด๋””์„œ MIDI ํŒŒ์ผ์„ ๊ตฌํ•  ์ˆ˜ ์žˆ๋ƒ๊ณ ์š”? ์—ฌ๋Ÿฌ ๊ณณ์—์„œ ๊ตฌํ•  ์ˆ˜ ์žˆ์–ด์š”:

  • ํด๋ž˜์‹ ์Œ์•… MIDI ์•„์นด์ด๋ธŒ
  • ํŒ์†ก MIDI ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค
  • ์ž์‹ ์ด ์ง์ ‘ ๋งŒ๋“  MIDI ํŒŒ์ผ

๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์•˜๋‹ค๋ฉด, ์ด์ œ ์ด ๋ฐ์ดํ„ฐ๋ฅผ ์šฐ๋ฆฌ ๋ชจ๋ธ์ด ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ๋กœ ๋ฐ”๊ฟ”์ค˜์•ผ ํ•ด์š”. ์ด ๊ณผ์ •์„ '์ „์ฒ˜๋ฆฌ'๋ผ๊ณ  ํ•ด์š”. ์Œ์•… ๋ฐ์ดํ„ฐ๋ฅผ ์ˆซ์ž๋กœ ๋ฐ”๊พธ๋Š” ๊ฑฐ์ฃ !

๊ฟ€ํŒ: ๋‹ค์–‘ํ•œ ์žฅ๋ฅด์˜ MIDI ํŒŒ์ผ์„ ์‚ฌ์šฉํ•˜๋ฉด ๋” ์žฌ๋ฏธ์žˆ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์–ด์š”! ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ๋‹ค์–‘ํ•œ ์Œ์•… ์žฌ๋Šฅ์„ ๋งŒ๋‚˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”. ๐Ÿ˜‰

์ž, ์ด์ œ ์ฝ”๋“œ๋ฅผ ํ†ตํ•ด MIDI ํŒŒ์ผ์„ ์ฒ˜๋ฆฌํ•ด๋ณผ๊นŒ์š”?


import glob
import numpy as np
from music21 import converter, instrument, note, chord

def get_notes():
    notes = []
    for file in glob.glob("path/to/your/midi/files/*.mid"):
        midi = converter.parse(file)
        notes_to_parse = None
        try:
            s2 = instrument.partitionByInstrument(midi)
            notes_to_parse = s2.parts[0].recurse() 
        except:
            notes_to_parse = midi.flat.notes
        
        for element in notes_to_parse:
            if isinstance(element, note.Note):
                notes.append(str(element.pitch))
            elif isinstance(element, chord.Chord):
                notes.append('.'.join(str(n) for n in element.normalOrder))
    
    return notes

notes = get_notes()
  

์šฐ์™€! ์ด ์ฝ”๋“œ๊ฐ€ ํ•˜๋Š” ์ผ์ด ๋ญ”์ง€ ์•Œ์•„์š”? MIDI ํŒŒ์ผ์—์„œ ์Œํ‘œ์™€ ํ™”์Œ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•ด์„œ ๋ฆฌ์ŠคํŠธ๋กœ ๋งŒ๋“ค์–ด์ฃผ๋Š” ๊ฑฐ์˜ˆ์š”. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์šฐ๋ฆฌ AI๊ฐ€ ์Œ์•…์˜ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์›Œ์ ธ์š”.

3๋‹จ๊ณ„: ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ

์ด์ œ ์ง„์งœ ์žฌ๋ฏธ์žˆ๋Š” ๋ถ€๋ถ„์ด์—์š”! ์šฐ๋ฆฌ๋งŒ์˜ AI ์ž‘๊ณก๊ฐ€๋ฅผ ๋งŒ๋“ค ์‹œ๊ฐ„์ด์—์š”. ์šฐ๋ฆฌ๋Š” LSTM(Long Short-Term Memory) ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•  ๊ฑฐ์˜ˆ์š”. LSTM์ด ๋ญ๋ƒ๊ณ ์š”? ์Œ์•…์ฒ˜๋Ÿผ ์ˆœ์„œ๊ฐ€ ์ค‘์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๋Š” ๋ฐ ํŠนํ™”๋œ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ์˜ˆ์š”.

๋ชจ๋ธ ๊ตฌ์กฐ๋Š” ์ด๋ ‡๊ฒŒ ๋  ๊ฑฐ์˜ˆ์š”:

  • ์ž…๋ ฅ ๋ ˆ์ด์–ด
  • LSTM ๋ ˆ์ด์–ด (์—ฌ๋Ÿฌ ๊ฐœ)
  • Dropout ๋ ˆ์ด์–ด (๊ณผ์ ํ•ฉ ๋ฐฉ์ง€)
  • Dense ๋ ˆ์ด์–ด (์ถœ๋ ฅ)

์ž, ์ด์ œ ์ฝ”๋“œ๋กœ ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด๋ณผ๊นŒ์š”?


from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM, Activation

def create_model(network_input, n_vocab):
    model = Sequential()
    model.add(LSTM(
        512,
        input_shape=(network_input.shape[1], network_input.shape[2]),
        return_sequences=True
    ))
    model.add(Dropout(0.3))
    model.add(LSTM(512, return_sequences=True))
    model.add(Dropout(0.3))
    model.add(LSTM(512))
    model.add(Dense(256))
    model.add(Dropout(0.3))
    model.add(Dense(n_vocab))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

    return model

model = create_model(network_input, n_vocab)
  

์šฐ์™€! ์ด๊ฒŒ ๋ฐ”๋กœ ์šฐ๋ฆฌ์˜ AI ์ž‘๊ณก๊ฐ€์˜ˆ์š”. ์–ด๋–ค๊ฐ€์š”? ๋ณต์žกํ•ด ๋ณด์ด๋‚˜์š”? ๊ฑฑ์ • ๋งˆ์„ธ์š”. ์ด ๋ชจ๋ธ์€ ์Œ์•…์˜ ํŒจํ„ด์„ ํ•™์Šตํ•˜๊ณ , ์ƒˆ๋กœ์šด ์Œ์•…์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๋ฐ ์ตœ์ ํ™”๋˜์–ด ์žˆ์–ด์š”.

์•Œ์•„๋‘์„ธ์š”: ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋Š” ์‹คํ—˜์„ ํ†ตํ•ด ๋” ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์–ด์š”. ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ์ž์‹ ์˜ ์žฌ๋Šฅ์„ ๊ณ„์† ๋ฐœ์ „์‹œํ‚ค๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ์šฐ๋ฆฌ์˜ AI ๋ชจ๋ธ๋„ ๊ณ„์† ๋ฐœ์ „์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค!

4๋‹จ๊ณ„: ๋ชจ๋ธ ํ•™์Šต์‹œํ‚ค๊ธฐ

์ž, ์ด์ œ ์šฐ๋ฆฌ์˜ AI ์ž‘๊ณก๊ฐ€๋ฅผ ๊ต์œก์‹œํ‚ฌ ์‹œ๊ฐ„์ด์—์š”! ์ด ๊ณผ์ •์„ 'ํ•™์Šต'์ด๋ผ๊ณ  ํ•ด์š”. ๋ชจ๋ธ์—๊ฒŒ ์šฐ๋ฆฌ๊ฐ€ ์ค€๋น„ํ•œ ์Œ์•… ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด์—ฌ์ฃผ๋ฉด์„œ "์ด๋Ÿฐ ๊ฒŒ ์Œ์•…์ด์•ผ!"๋ผ๊ณ  ๊ฐ€๋ฅด์น˜๋Š” ๊ฑฐ์ฃ .

ํ•™์Šต ๊ณผ์ •์€ ์ด๋ ‡๊ฒŒ ์ง„ํ–‰๋ผ์š”:

  1. ์ค€๋น„๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅํ•ด์š”.
  2. ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ์™€ ์‹ค์ œ ๋ฐ์ดํ„ฐ๋ฅผ ๋น„๊ตํ•ด์š”.
  3. ์ฐจ์ด(์˜ค์ฐจ)๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ์ด๋ฅผ ์ค„์ด๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ชจ๋ธ์„ ์กฐ์ •ํ•ด์š”.
  4. ์ด ๊ณผ์ •์„ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ฐ˜๋ณตํ•ด์š”.

์ฝ”๋“œ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์ด๋ ‡๊ฒŒ ๋ผ์š”:


def train_model(model, network_input, network_output):
    filepath = "weights-improvement-{epoch:02d}-{loss:.4f}-bigger.hdf5"
    checkpoint = ModelCheckpoint(
        filepath,
        monitor='loss',
        verbose=0,
        save_best_only=True,
        mode='min'
    )
    callbacks_list = [checkpoint]

    model.fit(network_input, network_output, epochs=200, batch_size=64, callbacks=callbacks_list)

train_model(model, network_input, network_output)
  

์šฐ์™€! ์ด์ œ ์šฐ๋ฆฌ์˜ AI ์ž‘๊ณก๊ฐ€๊ฐ€ ์—ด์‹ฌํžˆ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์–ด์š”. ๋งˆ์น˜ ์Œ์•… ํ•™๊ต์— ๋‹ค๋‹ˆ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”! ๐ŸŽ“

ํ•™์Šต์ด ๋๋‚˜๋ฉด, ์šฐ๋ฆฌ ๋ชจ๋ธ์€ ์Œ์•…์˜ ํŒจํ„ด๊ณผ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๊ฒŒ ๋  ๊ฑฐ์˜ˆ์š”. ๊ทธ๋Ÿผ ์ด์ œ ์ƒˆ๋กœ์šด ์Œ์•…์„ ๋งŒ๋“ค์–ด๋‚ผ ์ค€๋น„๊ฐ€ ๋œ ๊ฑฐ์ฃ !

5๋‹จ๊ณ„: ์Œ์•… ์ƒ์„ฑํ•˜๊ธฐ

๋“œ๋””์–ด ๊ธฐ๋‹ค๋ฆฌ๋˜ ์ˆœ๊ฐ„์ด ์™”์–ด์š”! ์šฐ๋ฆฌ์˜ AI ์ž‘๊ณก๊ฐ€๊ฐ€ ์ฒซ ๊ณก์„ ๋งŒ๋“ค ์‹œ๊ฐ„์ด์—์š”. ์–ด๋–ค ์Œ์•…์ด ๋‚˜์˜ฌ์ง€ ์ •๋ง ๊ธฐ๋Œ€๋˜์ง€ ์•Š๋‚˜์š”? ๐Ÿ˜†

์Œ์•…์„ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์€ ์ด๋ ‡๊ฒŒ ์ง„ํ–‰๋ผ์š”:

  1. ์‹œ์ž‘ ํŒจํ„ด์„ ์„ ํƒํ•ด์š” (๋žœ๋คํ•˜๊ฒŒ ๋˜๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ง์ ‘ ์ •ํ•ด์ค„ ์ˆ˜ ์žˆ์–ด์š”).
  2. ๋ชจ๋ธ์—๊ฒŒ "๋‹ค์Œ์— ์˜ฌ ์Œํ‘œ๋Š” ๋ญ˜๊นŒ?"๋ผ๊ณ  ๋ฌผ์–ด๋ด์š”.
  3. ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ์Œํ‘œ๋ฅผ ๊ธฐ๋กํ•ด์š”.
  4. ์ด ๊ณผ์ •์„ ์›ํ•˜๋Š” ๊ธธ์ด๋งŒํผ ๋ฐ˜๋ณตํ•ด์š”.
  5. ์ƒ์„ฑ๋œ ์Œํ‘œ ์‹œํ€€์Šค๋ฅผ MIDI ํŒŒ์ผ๋กœ ๋ณ€ํ™˜ํ•ด์š”.

์ž, ์ด์ œ ์ฝ”๋“œ๋กœ ์Œ์•…์„ ๋งŒ๋“ค์–ด๋ณผ๊นŒ์š”?


def generate_notes(model, network_input, pitchnames, n_vocab):
    start = np.random.randint(0, len(network_input)-1)
    int_to_note = dict((number, note) for number, note in enumerate(pitchnames))
    pattern = network_input[start]
    prediction_output = []

    for note_index in range(500):
        prediction_input = np.reshape(pattern, (1, len(pattern), 1))
        prediction_input = prediction_input / float(n_vocab)
        prediction = model.predict(prediction_input, verbose=0)
        index = np.argmax(prediction)
        result = int_to_note[index]
        prediction_output.append(result)
        pattern = np.append(pattern, index)
        pattern = pattern[1:len(pattern)]

    return prediction_output

def create_midi(prediction_output):
    offset = 0
    output_notes = []

    for pattern in prediction_output:
        if ('.' in pattern) or pattern.isdigit():
            notes_in_chord = pattern.split('.')
            notes = []
            for current_note in notes_in_chord:
                new_note = note.Note(int(current_note))
                new_note.storedInstrument = instrument.Piano()
                notes.append(new_note)
            new_chord = chord.Chord(notes)
            new_chord.offset = offset
            output_notes.append(new_chord)
        else:
            new_note = note.Note(pattern)
            new_note.offset = offset
            new_note.storedInstrument = instrument.Piano()
            output_notes.append(new_note)

        offset += 0.5

    midi_stream = stream.Stream(output_notes)
    midi_stream.write('midi', fp='test_output.mid')

generated_notes = generate_notes(model, network_input, pitchnames, n_vocab)
create_midi(generated_notes)
  

์งœ์ž”! ๐ŸŽ‰ ์šฐ๋ฆฌ์˜ AI ์ž‘๊ณก๊ฐ€๊ฐ€ ์ฒซ ๊ณก์„ ๋งŒ๋“ค์—ˆ์–ด์š”! 'test_output.mid' ํŒŒ์ผ์„ ์—ด์–ด์„œ ๋“ค์–ด๋ณด์„ธ์š”. ์–ด๋–ค๊ฐ€์š”? ์ข€ ์–ด์ƒ‰ํ•œ๊ฐ€์š”? ์•„๋‹ˆ๋ฉด ์˜์™ธ๋กœ ๊ดœ์ฐฎ๋‚˜์š”?

์žฌ๋ฏธ์žˆ๋Š” ์‹คํ—˜: ๋‹ค๋ฅธ ์•…๊ธฐ๋กœ ๋ฐ”๊ฟ”๋ณด๋Š” ๊ฑด ์–ด๋–จ๊นŒ์š”? Piano() ๋Œ€์‹  ๋‹ค๋ฅธ ์•…๊ธฐ๋ฅผ ๋„ฃ์–ด๋ณด์„ธ์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, instrument.Violin()์ด๋‚˜ instrument.Guitar()๋ฅผ ์‚ฌ์šฉํ•ด๋ณผ ์ˆ˜ ์žˆ์–ด์š”. ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ๋‹ค์–‘ํ•œ ์•…๊ธฐ ์—ฐ์ฃผ์ž๋ฅผ ๋งŒ๋‚˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ง์ด์—์š”!

๐Ÿš€ ๋” ๋‚˜์•„๊ฐ€๊ธฐ: ๋ชจ๋ธ ๊ฐœ์„ ํ•˜๊ธฐ

์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“  AI ์ž‘๊ณก๊ฐ€๊ฐ€ ๊ฝค ๊ดœ์ฐฎ์€ ์Œ์•…์„ ๋งŒ๋“ค์–ด๋ƒˆ์ฃ ? ํ•˜์ง€๋งŒ ์—ฌ๊ธฐ์„œ ๋ฉˆ์ถ”๋ฉด ์•ˆ ๋ผ์š”! ๋” ์ข‹์€ ์Œ์•…์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์šฐ๋ฆฌ์˜ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋“ค์ด ์žˆ์–ด์š”.

1. ๋ฐ์ดํ„ฐ ๋‹ค์–‘ํ™”ํ•˜๊ธฐ

AI๋„ ๋‹ค์–‘ํ•œ ๊ฒฝํ—˜์ด ํ•„์š”ํ•ด์š”. ๋” ๋งŽ์€ ์žฅ๋ฅด, ๋” ๋‹ค์–‘ํ•œ ์•„ํ‹ฐ์ŠคํŠธ์˜ ์Œ์•…์„ ํ•™์Šต์‹œ์ผœ๋ณด๋Š” ๊ฑด ์–ด๋–จ๊นŒ์š”? ํด๋ž˜์‹, ์žฌ์ฆˆ, ํŒ, ๋ก ๋“ฑ ๋‹ค์–‘ํ•œ ์žฅ๋ฅด์˜ MIDI ํŒŒ์ผ์„ ์ˆ˜์ง‘ํ•ด์„œ ํ•™์Šต์‹œ์ผœ๋ณด์„ธ์š”. ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ๋‹ค์–‘ํ•œ ์Œ์•… ์žฌ๋Šฅ์„ ๋งŒ๋‚˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ์šฐ๋ฆฌ์˜ AI๋„ ๋‹ค์–‘ํ•œ ์Œ์•…์„ ๊ฒฝํ—˜ํ•˜๊ฒŒ ๋˜๋Š” ๊ฑฐ์ฃ !

2. ๋ชจ๋ธ ๊ตฌ์กฐ ์‹คํ—˜ํ•˜๊ธฐ

์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“  ๋ชจ๋ธ ๊ตฌ์กฐ๋Š” ์‹œ์ž‘์ผ ๋ฟ์ด์—์š”. LSTM ๋ ˆ์ด์–ด์˜ ์ˆ˜๋ฅผ ๋Š˜๋ฆฌ๊ฑฐ๋‚˜ ์ค„์—ฌ๋ณด๊ณ , ๊ฐ ๋ ˆ์ด์–ด์˜ ๋‰ด๋Ÿฐ ์ˆ˜๋ฅผ ์กฐ์ •ํ•ด๋ณด์„ธ์š”. ๋˜ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ๋ ˆ์ด์–ด๋ฅผ ์ถ”๊ฐ€ํ•ด๋ณผ ์ˆ˜๋„ ์žˆ์–ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, Bidirectional LSTM์ด๋‚˜ Attention ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์‚ฌ์šฉํ•ด๋ณผ ์ˆ˜ ์žˆ์ฃ .


from keras.layers import Bidirectional

model = Sequential()
model.add(Bidirectional(LSTM(512, return_sequences=True), input_shape=(network_input.shape[1], network_input.shape[2])))
model.add(Dropout(0.3))
model.add(Bidirectional(LSTM(512, return_sequences=True)))
model.add(Dropout(0.3))
model.add(Bidirectional(LSTM(512)))
model.add(Dense(256))
model.add(Dropout(0.3))
model.add(Dense(n_vocab))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
  

์ด๋ ‡๊ฒŒ Bidirectional LSTM์„ ์‚ฌ์šฉํ•˜๋ฉด, ๋ชจ๋ธ์ด ์Œ์•…์˜ ์•ž๋’ค ๋งฅ๋ฝ์„ ๋” ์ž˜ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์–ด์š”. ๋งˆ์น˜ ์ž‘๊ณก๊ฐ€๊ฐ€ ๊ณก์˜ ์ „์ฒด์ ์ธ ํ๋ฆ„์„ ๊ณ ๋ คํ•˜๋ฉด์„œ ์ž‘๊ณกํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”!

3. ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ํ•˜๊ธฐ

๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์€ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์— ๋”ฐ๋ผ ํฌ๊ฒŒ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์–ด์š”. ๋ฐฐ์น˜ ํฌ๊ธฐ, ํ•™์Šต๋ฅ , ์—ํฌํฌ ์ˆ˜ ๋“ฑ์„ ์กฐ์ •ํ•ด๋ณด์„ธ์š”. ์ผ€๋ผ์Šค์˜ KerasTuner๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์ด ๊ณผ์ •์„ ์ž๋™ํ™”ํ•  ์ˆ˜ ์žˆ์–ด์š”.


import keras_tuner as kt

def model_builder(hp):
    model = Sequential()
    model.add(LSTM(
        hp.Int('lstm_units', min_value=32, max_value=512, step=32),
        input_shape=(network_input.shape[1], network_input.shape[2]),
        return_sequences=True
    ))
    model.add(Dropout(hp.Float('dropout', min_value=0.0, max_value=0.5, step=0.1)))
    model.add(LSTM(hp.Int('lstm_units_2', min_value=32, max_value=512, step=32)))
    model.add(Dense(n_vocab))
    model.add(Activation('softmax'))
    
    model.compile(
        optimizer=keras.optimizers.Adam(
            hp.Float('learning_rate', min_value=1e-4, max_value=1e-2, sampling='LOG')
        ),
        loss='categorical_crossentropy'
    )
    
    return model

tuner = kt.Hyperband(
    model_builder,
    objective='val_loss',
    max_epochs=50,
    factor=3,
    directory='my_dir',
    project_name='music_gen'
)

tuner.search(network_input, network_output, epochs=50, validation_split=0.2)

best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]

print(f"""
The hyperparameter search is complete. The optimal number of units in the LSTM layer is {best_hps.get('lstm_units')} and the optimal learning rate for the optimizer is {best_hps.get('learning_rate')}.
""")
  

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์šฐ๋ฆฌ ๋ชจ๋ธ์—๊ฒŒ ๊ฐ€์žฅ ์ž˜ ๋งž๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์–ด์š”. ๋งˆ์น˜ ์Œ์•…๊ฐ€๊ฐ€ ์ž์‹ ์—๊ฒŒ ๊ฐ€์žฅ ์ž˜ ๋งž๋Š” ์•…๊ธฐ์™€ ์—ฐ์ฃผ ์Šคํƒ€์ผ์„ ์ฐพ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”!

4. ์Œ์•… ์ด๋ก  ์ ์šฉํ•˜๊ธฐ

AI๊ฐ€ ๋งŒ๋“  ์Œ์•…์ด ์ข€ ๋” '์Œ์•…๋‹ต๊ฒŒ' ๋“ค๋ฆฌ๋ ค๋ฉด ์Œ์•… ์ด๋ก ์„ ์ ์šฉํ•ด๋ณผ ์ˆ˜ ์žˆ์–ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ฝ”๋“œ ์ง„ํ–‰์ด๋‚˜ ์Œ๊ณ„์— ๋Œ€ํ•œ ๊ทœ์น™์„ ๋ชจ๋ธ์— ์ถ”๊ฐ€ํ•  ์ˆ˜ ์žˆ์ฃ .


def apply_music_theory(generated_notes):
    # ๊ฐ„๋‹จํ•œ ์˜ˆ์‹œ: C ๋ฉ”์ด์ € ์Šค์ผ€์ผ๋งŒ ์‚ฌ์šฉํ•˜๋„๋ก ์ œํ•œ
    c_major_scale = ['C', 'D', 'E', 'F', 'G', 'A', 'B']
    corrected_notes = []
    
    for note in generated_notes:
        if note[0] in c_major_scale:
            corrected_notes.append(note)
        else:
            # ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด C ๋ฉ”์ด์ € ์Šค์ผ€์ผ ์Œ์œผ๋กœ ๋ณ€๊ฒฝ
            closest_note = min(c_major_scale, key=lambda x: abs(ord(x) - ord(note[0])))
            corrected_notes.append(closest_note + note[1:])
    
    return corrected_notes

generated_notes = generate_notes(model, network_input, pitchnames, n_vocab)
corrected_notes = apply_music_theory(generated_notes)
create_midi(corrected_notes)
  

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด AI๊ฐ€ ๋งŒ๋“  ์Œ์•…์ด ํŠน์ • ์Œ๊ณ„ ์•ˆ์—์„œ๋งŒ ์›€์ง์ด๊ฒŒ ๋˜์–ด, ์ข€ ๋” ์กฐํ™”๋กœ์šด ์†Œ๋ฆฌ๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ์–ด์š”. ๋ฌผ๋ก  ์ด๊ฑด ์•„์ฃผ ๊ฐ„๋‹จํ•œ ์˜ˆ์‹œ์ผ ๋ฟ์ด์—์š”. ๋” ๋ณต์žกํ•œ ์Œ์•… ์ด๋ก ์„ ์ ์šฉํ• ์ˆ˜๋ก, AI์˜ ์Œ์•…์€ ๋”์šฑ ์„ธ๋ จ๋˜์–ด์งˆ ๊ฑฐ์˜ˆ์š”!

5. ๋‹ค์ค‘ ์•…๊ธฐ ์ง€์›ํ•˜๊ธฐ

์ง€๊ธˆ๊นŒ์ง€๋Š” ํ”ผ์•„๋…ธ ์†Œ๋ฆฌ๋งŒ ์‚ฌ์šฉํ–ˆ์ง€๋งŒ, ์—ฌ๋Ÿฌ ์•…๊ธฐ๋ฅผ ๋™์‹œ์— ์‚ฌ์šฉํ•˜๋„๋ก ๋ชจ๋ธ์„ ํ™•์žฅํ•  ์ˆ˜ ์žˆ์–ด์š”. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด AI๊ฐ€ ์ž‘์€ ์˜ค์ผ€์ŠคํŠธ๋ผ๋ฅผ ์ง€ํœ˜ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋  ๊ฑฐ์˜ˆ์š”!


def create_multi_instrument_midi(prediction_output):
    offset = 0
    output_notes = []

    for pattern in prediction_output:
        # ํŒจํ„ด์—์„œ ์•…๊ธฐ ์ •๋ณด์™€ ์Œํ‘œ ์ •๋ณด๋ฅผ ๋ถ„๋ฆฌ
        instrument_name, note_info = pattern.split(':', 1)
        
        if ('.' in note_info) or note_info.isdigit():
            notes_in_chord = note_info.split('.')
            notes = []
            for current_note in notes_in_chord:
                new_note = note.Note(int(current_note))
                new_note.storedInstrument = instrument.fromString(instrument_name)
                notes.append(new_note)
            new_chord = chord.Chord(notes)
            new_chord.offset = offset
            output_notes.append(new_chord)
        else:
            new_note = note.Note(note_info)
            new_note.offset = offset
            new_note.storedInstrument = instrument.fromString(instrument_name)
            output_notes.append(new_note)

        offset += 0.5

    midi_stream = stream.Stream(output_notes)
    midi_stream.write('midi', fp='multi_instrument_output.mid')

# ์˜ˆ์‹œ ์‚ฌ์šฉ
generated_notes = [
    'Piano:C4', 'Violin:E4', 'Piano:G4', 'Cello:C3',
    'Piano:F4', 'Violin:A4', 'Piano:C5', 'Cello:F3'
]
create_multi_instrument_midi(generated_notes)
  

์šฐ์™€! ์ด์ œ ์šฐ๋ฆฌ์˜ AI๋Š” ์—ฌ๋Ÿฌ ์•…๊ธฐ๋ฅผ ๋™์‹œ์— ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ์–ด์š”. ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ์—ฌ๋Ÿฌ ์Œ์•…๊ฐ€๋“ค์ด ํ˜‘์—ฐํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ์šฐ๋ฆฌ์˜ AI๋„ ์—ฌ๋Ÿฌ ์•…๊ธฐ์˜ ์กฐํ™”๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์žˆ๊ฒŒ ๋œ ๊ฑฐ์ฃ !

๐ŸŽญ AI ์ž‘๊ณก๊ฐ€์˜ ์ฐฝ์˜์„ฑ: ์–ด๋””๊นŒ์ง€ ๊ฐ€๋Šฅํ• ๊นŒ?

AI ์ž‘๊ณก๊ฐ€์˜ ์ฐฝ์˜์„ฑ์— ๋Œ€ํ•ด ๋” ๊นŠ์ด ๋“ค์–ด๊ฐ€ ๋ณผ๊นŒ์š”? ์ด ์ฃผ์ œ๋Š” ์ •๋ง ํฅ๋ฏธ์ง„์ง„ํ•ด์š”! ๐ŸŽจ๐ŸŽต

AI์˜ ์ฐฝ์˜์„ฑ: ์ง„์ •ํ•œ ์ฐฝ์ž‘์ธ๊ฐ€, ๋ชจ๋ฐฉ์ธ๊ฐ€?

๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ๊ถ๊ธˆํ•ด ํ•˜๋Š” ์งˆ๋ฌธ์ด์—์š”. "AI๊ฐ€ ์ •๋ง๋กœ ์ฐฝ์˜์ ์ผ ์ˆ˜ ์žˆ์„๊นŒ?" ์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต์€ ์ƒ๊ฐ๋ณด๋‹ค ๋ณต์žกํ•ด์š”.

ํ•œํŽธ์œผ๋กœ๋Š”, AI๊ฐ€ ๋งŒ๋“  ์Œ์•…์ด ์ธ๊ฐ„์ด ๋งŒ๋“  ์Œ์•…๊ณผ ๊ตฌ๋ณ„ํ•˜๊ธฐ ์–ด๋ ค์šธ ์ •๋„๋กœ ๋ฐœ์ „ํ–ˆ์–ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, OpenAI์˜ MuseNet์ด๋‚˜ Google์˜ Magenta ํ”„๋กœ์ ํŠธ์—์„œ ๋งŒ๋“  AI ์Œ์•…๋“ค์€ ์ •๋ง ๋†€๋ผ์›Œ์š”. ๋งˆ์น˜ ์ˆจ๊ฒจ์ง„ ์ฒœ์žฌ ์ž‘๊ณก๊ฐ€๋ฅผ ๋ฐœ๊ฒฌํ•œ ๊ฒƒ ๊ฐ™์ฃ !

ํ•˜์ง€๋งŒ ๋‹ค๋ฅธ ํ•œํŽธ์œผ๋กœ๋Š”, AI์˜ '์ฐฝ์˜์„ฑ'์ด ๊ฒฐ๊ตญ ์ธ๊ฐ„์ด ๋งŒ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ '๊ณ ๊ธ‰ ๋ชจ๋ฐฉ'์— ๋ถˆ๊ณผํ•˜๋‹ค๋Š” ์˜๊ฒฌ๋„ ์žˆ์–ด์š”. AI๋Š” ๊ธฐ์กด ์Œ์•…์˜ ํŒจํ„ด์„ ํ•™์Šตํ•˜๊ณ  ๊ทธ๊ฒƒ์„ ์ƒˆ๋กญ๊ฒŒ ์กฐํ•ฉํ•˜๋Š” ๊ฒƒ์ผ ๋ฟ, ์ง„์ •ํ•œ ์˜๋ฏธ์˜ '์ฐฝ์ž‘'์„ ํ•˜๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ๋Š” ๊ฑฐ์ฃ .

์ƒ๊ฐํ•ด๋ณด๊ธฐ: ์—ฌ๋Ÿฌ๋ถ„์€ ์–ด๋–ป๊ฒŒ ์ƒ๊ฐํ•˜๋‚˜์š”? AI๊ฐ€ ๋งŒ๋“  ์Œ์•…์ด '์ง„์ •ํ•œ ์ฐฝ์ž‘'์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”? ์•„๋‹ˆ๋ฉด ๊ทธ์ € ๋ณต์žกํ•œ ๋ชจ๋ฐฉ์ผ ๋ฟ์ผ๊นŒ์š”? ์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต์€ ์˜ˆ์ˆ ๊ณผ ์ฐฝ์˜์„ฑ์— ๋Œ€ํ•œ ์šฐ๋ฆฌ์˜ ์ •์˜์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์–ด์š”.

AI ์ž‘๊ณก๊ฐ€์˜ ํ•œ๊ณ„์™€ ๊ฐ€๋Šฅ์„ฑ

AI ์ž‘๊ณก๊ฐ€์—๊ฒŒ๋„ ํ•œ๊ณ„๊ฐ€ ์žˆ์–ด์š”. ์˜ˆ๋ฅผ ๋“ค๋ฉด:

  • ๊ฐ์ • ํ‘œํ˜„์˜ ํ•œ๊ณ„: AI๋Š” ์ธ๊ฐ„์ฒ˜๋Ÿผ ๊ฐ์ •์„ ๋Š๋ผ์ง€ ๋ชปํ•ด์š”. ๊ทธ๋ž˜์„œ ๊นŠ์€ ๊ฐ๋™์„ ์ฃผ๋Š” ์Œ์•…์„ ๋งŒ๋“ค๊ธฐ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ์ฃ .
  • ๋ฌธํ™”์  ๋งฅ๋ฝ ์ดํ•ด์˜ ๋ถ€์กฑ: ์Œ์•…์€ ์ข…์ข… ํŠน์ • ๋ฌธํ™”๋‚˜ ์‹œ๋Œ€์˜ ์‚ฐ๋ฌผ์ด์—์š”. AI๊ฐ€ ์ด๋Ÿฐ ๋ณต์žกํ•œ ๋งฅ๋ฝ์„ ์™„์ „ํžˆ ์ดํ•ดํ•˜๊ธฐ๋Š” ์–ด๋ ค์›Œ์š”.