๐ŸŽฏ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋กœ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ๋งˆ์Šคํ„ฐํ•˜๊ธฐ ๐Ÿš€

์ฝ˜ํ…์ธ  ๋Œ€ํ‘œ ์ด๋ฏธ์ง€ - ๐ŸŽฏ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋กœ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ๋งˆ์Šคํ„ฐํ•˜๊ธฐ ๐Ÿš€

 

 

์•ˆ๋…•ํ•˜์„ธ์š”, ์—ฌ๋Ÿฌ๋ถ„! ์˜ค๋Š˜์€ ๋จธ์‹ ๋Ÿฌ๋‹ ์„ธ๊ณ„์—์„œ ๊ผญ ์•Œ์•„์•ผ ํ•  ์ดˆ๊ฐ•๋ ฅ ์Šคํ‚ฌ, ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์— ๋Œ€ํ•ด ์•Œ์•„๋ณผ ๊ฑฐ์˜ˆ์š”. ์ด๊ฑฐ ์ง„์งœ ๋Œ€๋ฐ•์ธ ๊ฑฐ ์•„์‹œ์ฃ ? ใ…‹ใ…‹ใ…‹ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ์„ฑ๋Šฅ ์—…๊ทธ๋ ˆ์ด๋“œํ•˜๋Š” ๋น„๋ฐ€ ๋ฌด๊ธฐ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์–ด์š”! ๐Ÿ˜Ž

์šฐ๋ฆฌ๊ฐ€ ์ด ์ฃผ์ œ๋ฅผ ํŒŒํ—ค์น˜๋‹ค ๋ณด๋ฉด, ์—ฌ๋Ÿฌ๋ถ„๋„ ๋ชจ๋ฅด๋Š” ์‚ฌ์ด์— AI ์ „๋ฌธ๊ฐ€๋กœ ๊ฑฐ๋“ญ๋‚  ์ˆ˜ ์žˆ์„ ๊ฑฐ์˜ˆ์š”. ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ์ƒˆ๋กœ์šด ์žฌ๋Šฅ์„ ๋ฐœ๊ฒฌํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ง์ด์ฃ ! ์ž, ๊ทธ๋Ÿผ ์ด ํฅ๋ฏธ์ง„์ง„ํ•œ ์—ฌ์ •์„ ํ•จ๊ป˜ ๋– ๋‚˜๋ณผ๊นŒ์š”? ๐Ÿš€

๐Ÿ’ก Pro Tip: ์ด ๊ธ€์„ ๋๊นŒ์ง€ ์ฝ์œผ๋ฉด, ์—ฌ๋Ÿฌ๋ถ„๋„ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์˜ ๋‹ฌ์ธ์ด ๋  ์ˆ˜ ์žˆ์–ด์š”! ๊ทธ๋Ÿผ ์—ฌ๋Ÿฌ๋ถ„์˜ AI ํ”„๋กœ์ ํŠธ๊ฐ€ ์‘ฅ์‘ฅ ์ž๋ผ๋‚  ๊ฑฐ์˜ˆ์š”. ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ์—ฌ๋Ÿฌ๋ถ„์˜ ์žฌ๋Šฅ์ด ๊ฝƒํ”ผ์šฐ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”! ๐ŸŒธ

๐Ÿค” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋ญ๊ธธ๋ž˜?

์ž, ๋จผ์ € ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋ญ”์ง€ ์•Œ์•„๋ณผ๊นŒ์š”? ์ด๊ฑฐ ์ง„์งœ ์ค‘์š”ํ•ด์š”! ๐Ÿง

ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต ๊ณผ์ •์„ ์กฐ์ ˆํ•˜๋Š” ์„ค์ •๊ฐ’์ด์—์š”. ์‰ฝ๊ฒŒ ๋งํ•ด์„œ, ์š”๋ฆฌํ•  ๋•Œ ๋ถˆ์˜ ์„ธ๊ธฐ๋‚˜ ์กฐ๋ฆฌ ์‹œ๊ฐ„์„ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋ผ์š”. ์ ์ ˆํ•œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •์€ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐ ๊ผญ ํ•„์š”ํ•˜๋‹ต๋‹ˆ๋‹ค!

์˜ˆ๋ฅผ ๋“ค์–ด๋ณผ๊นŒ์š”? ๐Ÿค“

  • ํ•™์Šต๋ฅ  (Learning Rate)
  • ๋ฐฐ์น˜ ํฌ๊ธฐ (Batch Size)
  • ์—ํฌํฌ ์ˆ˜ (Number of Epochs)
  • ์€๋‹‰์ธต์˜ ์ˆ˜์™€ ํฌ๊ธฐ (Number and Size of Hidden Layers)
  • ์ •๊ทœํ™” ๊ฐ•๋„ (Regularization Strength)

์ด๋Ÿฐ ๊ฒƒ๋“ค์ด ๋ฐ”๋กœ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์˜ˆ์š”. ์ด๊ฑธ ์ž˜ ์กฐ์ ˆํ•ด์•ผ ๋ชจ๋ธ์ด ์ œ๋Œ€๋กœ ์ž‘๋™ํ•œ๋‹ค๋‹ˆ๊นŒ์š”! ๐Ÿ˜‰

๐ŸŽญ ๋น„์œ  ํƒ€์ž„: ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ๋งˆ์น˜ ์š”๋ฆฌ์‚ฌ์˜ ๋น„๋ฐ€ ๋ ˆ์‹œํ”ผ ๊ฐ™์€ ๊ฑฐ์˜ˆ์š”. ์žฌ๋ฃŒ(๋ฐ์ดํ„ฐ)๋Š” ๊ฐ™์•„๋„, ์ด '๋น„๋ฐ€ ๋ ˆ์‹œํ”ผ'์— ๋”ฐ๋ผ ์š”๋ฆฌ(๋ชจ๋ธ)์˜ ๋ง›(์„ฑ๋Šฅ)์ด ํ™• ๋‹ฌ๋ผ์ง€์ฃ ! ์—ฌ๋Ÿฌ๋ถ„๋„ AI ์š”๋ฆฌ์‚ฌ๊ฐ€ ๋˜์–ด ์ตœ๊ณ ์˜ ๋ ˆ์‹œํ”ผ๋ฅผ ์ฐพ์•„๋ณด๋Š” ๊ฑฐ ์–ด๋•Œ์š”? ๐Ÿ˜‹๐Ÿ‘จโ€๐Ÿณ

๊ทธ๋Ÿฐ๋ฐ ๋ง์ด์ฃ , ์ด ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ค์ •ํ•˜๋Š” ๊ฒŒ ์ƒ๊ฐ๋ณด๋‹ค ์–ด๋ ค์›Œ์š”. ์™œ๋ƒ๊ณ ์š”? ๐Ÿค”

  1. ๋ฌดํ•œํ•œ ์กฐํ•ฉ: ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ข…๋ฅ˜๊ฐ€ ๋งŽ๊ณ , ๊ฐ๊ฐ์˜ ๊ฐ’ ๋ฒ”์œ„๋„ ๋„“์–ด์„œ ๊ฐ€๋Šฅํ•œ ์กฐํ•ฉ์ด ๊ฑฐ์˜ ๋ฌดํ•œํ•ด์š”.
  2. ์ƒํ˜ธ ์˜์กด์„ฑ: ํ•˜๋‚˜์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€๊ฒฝ์ด ๋‹ค๋ฅธ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์— ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์–ด์š”.
  3. ๋ฐ์ดํ„ฐ ์˜์กด์„ฑ: ์ตœ์ ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ๋ฐ์ดํ„ฐ์…‹๋งˆ๋‹ค ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์–ด์š”.
  4. ๊ณ„์‚ฐ ๋น„์šฉ: ๋ชจ๋“  ์กฐํ•ฉ์„ ๋‹ค ์‹œ๋„ํ•ด๋ณด๋ ค๋ฉด ์—„์ฒญ๋‚œ ์‹œ๊ฐ„๊ณผ ์ปดํ“จํŒ… ํŒŒ์›Œ๊ฐ€ ํ•„์š”ํ•ด์š”.

์ด๋Ÿฐ ์ด์œ  ๋•Œ๋ฌธ์—, ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์€ ์ •๋ง ๊ณจ์น˜ ์•„ํ”ˆ ์ž‘์—…์ด ๋  ์ˆ˜ ์žˆ์–ด์š”. ๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ์—๊ฒŒ ํ•„์š”ํ•œ ๊ฒŒ ๋ฐ”๋กœ... ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ž๋‹ˆ๋‹ค! ๐ŸŽ‰

ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์˜ ์–ด๋ ค์›€ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ๋ณต์žก์„ฑ ์‹œ๊ฐ„ ์–ด๋ ค์›€ ๊ณก์„ 

์ด ๊ทธ๋ž˜ํ”„๋ฅผ ๋ณด์„ธ์š”. ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์˜ ์–ด๋ ค์›€์„ ์ž˜ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์ฃ ? ์‹œ๊ฐ„์ด ์ง€๋‚ ์ˆ˜๋ก, ๊ทธ๋ฆฌ๊ณ  ๋ณต์žก์„ฑ์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ์–ด๋ ค์›€์ด ๊ธ‰๊ฒฉํžˆ ์˜ฌ๋ผ๊ฐ€๋Š” ๊ฑธ ๋ณผ ์ˆ˜ ์žˆ์–ด์š”. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๊ฐ€ ์šฐ๋ฆฌ์˜ ๊ตฌ์›์ž๊ฐ€ ๋˜์–ด์ค„ ๊ฑฐ์˜ˆ์š”! ๐Ÿ˜‡

์ž, ์ด์ œ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๊ฐ€ ์–ด๋–ป๊ฒŒ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š”์ง€ ์•Œ์•„๋ณผ๊นŒ์š”? ๋‹ค์Œ ์„น์…˜์—์„œ ์ž์„ธํžˆ ์„ค๋ช…ํ•ด๋“œ๋ฆด๊ฒŒ์š”. ๊ธฐ๋Œ€๋˜์ง€ ์•Š๋‚˜์š”? ใ…Žใ…Ž ๐Ÿš€

๐Ÿง™โ€โ™‚๏ธ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ๋งˆ๋ฒ•

์ž, ์ด์ œ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ์„ธ๊ณ„๋กœ ๋“ค์–ด๊ฐ€๋ณผ๊นŒ์š”? ์ด๊ฑด ์ •๋ง ๋Œ€๋ฐ•์ด์—์š”! ๐ŸŽฉโœจ

๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋Š” ํ™•๋ฅ ์  ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด ์ตœ์ ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ์•„๋‚ด๋Š” ๋˜‘๋˜‘ํ•œ ๋ฐฉ๋ฒ•์ด์—์š”. ๊ทธ๋ƒฅ ๋ฌด์ž‘์ • ์‹œ๋„ํ•˜๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ, ์ด์ „์˜ ์‹œ๋„๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ "์–ด๋–ค ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์ข‹์„์ง€" ์˜ˆ์ธกํ•˜๋ฉด์„œ ์ฐพ์•„๊ฐ€๋Š” ๊ฑฐ์ฃ . ๋งˆ์น˜ ๋ณด๋ฌผ์ฐพ๊ธฐ๋ฅผ ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”! ๐Ÿ—บ๏ธ๐Ÿ’Ž

๐ŸŽฎ ๊ฒŒ์ž„์œผ๋กœ ์ดํ•ดํ•˜๊ธฐ: ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋Š” ๋งˆ์น˜ '์Šค๋ฌด๊ณ ๊ฐœ' ๊ฒŒ์ž„๊ณผ ๋น„์Šทํ•ด์š”. ์—ฌ๋Ÿฌ๋ถ„์ด ์ƒ๊ฐํ•œ ๋‹ต์„ ๋งž์ถ”๊ธฐ ์œ„ํ•ด, ์ปดํ“จํ„ฐ๊ฐ€ ๋˜‘๋˜‘ํ•˜๊ฒŒ ์งˆ๋ฌธ์„ ์„ ํƒํ•˜๋Š” ๊ฑฐ์ฃ . ๊ฐ ์งˆ๋ฌธ(ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •)๋งˆ๋‹ค ๋” ์ข‹์€ ์ถ”์ธก์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋Š” ๊ฑฐ์˜ˆ์š”!

๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ํ•ต์‹ฌ ์š”์†Œ๋“ค์„ ์‚ดํŽด๋ณผ๊นŒ์š”? ๐Ÿ”

  1. ๋ชฉ์  ํ•จ์ˆ˜ (Objective Function): ์šฐ๋ฆฌ๊ฐ€ ์ตœ์ ํ™”ํ•˜๊ณ  ์‹ถ์€ ๋Œ€์ƒ์ด์—์š”. ๋ณดํ†ต ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•ด์š”.
  2. ํ™•๋ฅ  ๋ชจ๋ธ (Probabilistic Model): ์ด์ „ ์‹œ๋„๋“ค์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ชฉ์  ํ•จ์ˆ˜๋ฅผ ์ถ”์ •ํ•ด์š”. ์ฃผ๋กœ ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค(Gaussian Process)๋ฅผ ์‚ฌ์šฉํ•˜์ฃ .
  3. ํš๋“ ํ•จ์ˆ˜ (Acquisition Function): ๋‹ค์Œ์— ์–ด๋–ค ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‹œ๋„ํ•ด๋ณผ์ง€ ๊ฒฐ์ •ํ•ด์š”.

์ด ์„ธ ๊ฐ€์ง€๊ฐ€ ์–ด์šฐ๋Ÿฌ์ ธ์„œ ๋งˆ๋ฒ• ๊ฐ™์€ ์ผ์„ ํ•ด๋‚ด๋Š” ๊ฑฐ์˜ˆ์š”! โœจ

๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” ํ”„๋กœ์„ธ์Šค ๋ชฉ์  ํ•จ์ˆ˜ ํ™•๋ฅ  ๋ชจ๋ธ ํš๋“ ํ•จ์ˆ˜

์ด ๊ทธ๋ฆผ์„ ๋ณด์„ธ์š”. ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ์š”์†Œ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š”์ง€ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์–ด์š”. ๋ชฉ์  ํ•จ์ˆ˜์—์„œ ์‹œ์ž‘ํ•ด์„œ, ํ™•๋ฅ  ๋ชจ๋ธ์„ ๊ฑฐ์ณ, ํš๋“ ํ•จ์ˆ˜๋กœ ์ด์–ด์ง€๋Š” ๊ณผ์ •์ด ๋ฐ˜๋ณต๋˜๋ฉด์„œ ์ตœ์ ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ์•„๊ฐ€๋Š” ๊ฑฐ์ฃ . ๋ฉ‹์ง€์ง€ ์•Š๋‚˜์š”? ๐Ÿ˜Ž

์ž, ์ด์ œ ๊ฐ ์š”์†Œ์— ๋Œ€ํ•ด ๋” ์ž์„ธํžˆ ์•Œ์•„๋ณผ๊นŒ์š”? ๐Ÿค“

1. ๋ชฉ์  ํ•จ์ˆ˜ (Objective Function) ๐ŸŽฏ

๋ชฉ์  ํ•จ์ˆ˜๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ตœ์ ํ™”ํ•˜๊ณ  ์‹ถ์€ ๋Œ€์ƒ์ด์—์š”. ๋ณดํ†ต ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์ฃ . ์˜ˆ๋ฅผ ๋“ค๋ฉด:

  • ๋ถ„๋ฅ˜ ๋ฌธ์ œ์—์„œ์˜ ์ •ํ™•๋„ (Accuracy)
  • ํšŒ๊ท€ ๋ฌธ์ œ์—์„œ์˜ ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ (Mean Squared Error)
  • ๊ต์ฐจ ๊ฒ€์ฆ ์ ์ˆ˜ (Cross-validation Score)

๋ชฉ์  ํ•จ์ˆ˜๋Š” "๋ธ”๋ž™๋ฐ•์Šค" ํ•จ์ˆ˜๋กœ ์ทจ๊ธ‰๋ผ์š”. ์ฆ‰, ์ž…๋ ฅ(ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ)์„ ๋„ฃ์œผ๋ฉด ์ถœ๋ ฅ(์„ฑ๋Šฅ ์ ์ˆ˜)์ด ๋‚˜์˜ค์ง€๋งŒ, ๊ทธ ๋‚ด๋ถ€ ์ž‘๋™ ๋ฐฉ์‹์€ ๋ชจ๋ฅธ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋Š” ๊ฑฐ์ฃ .

2. ํ™•๋ฅ  ๋ชจ๋ธ (Probabilistic Model) ๐Ÿง 

ํ™•๋ฅ  ๋ชจ๋ธ์€ ์ด์ „ ์‹œ๋„๋“ค์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ชฉ์  ํ•จ์ˆ˜๋ฅผ ์ถ”์ •ํ•ด์š”. ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ๊ฑด ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค(Gaussian Process)์˜ˆ์š”.

๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค๋Š” ์–ด๋–ค ์ ์—์„œ์˜ ํ•จ์ˆ˜ ๊ฐ’์„ ์˜ˆ์ธกํ•  ๋•Œ, ๊ทธ ์ฃผ๋ณ€ ์ ๋“ค์˜ ํ•จ์ˆ˜ ๊ฐ’์„ ๊ณ ๋ คํ•ด์š”. ์ด๊ฒŒ ๋ฐ”๋กœ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ "ํ•™์Šต" ๋Šฅ๋ ฅ์ด์—์š”!

๐ŸŒŸ ์žฌ๋Šฅ๋„ท Tip: ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฑด ์‰ฝ์ง€ ์•Š์„ ์ˆ˜ ์žˆ์–ด์š”. ํ•˜์ง€๋งŒ ๊ฑฑ์ • ๋งˆ์„ธ์š”! ์žฌ๋Šฅ๋„ท์—์„œ ๋จธ์‹ ๋Ÿฌ๋‹ ์ „๋ฌธ๊ฐ€์˜ ๋„์›€์„ ๋ฐ›์•„ ๋” ๊นŠ์ด ์žˆ๊ฒŒ ๊ณต๋ถ€ํ•  ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค. ํ•จ๊ป˜ ๋ฐฐ์šฐ๋ฉด ๋” ์žฌ๋ฏธ์žˆ๊ฒ ์ฃ ? ๐Ÿ˜‰

3. ํš๋“ ํ•จ์ˆ˜ (Acquisition Function) ๐Ÿ•ต๏ธโ€โ™‚๏ธ

ํš๋“ ํ•จ์ˆ˜๋Š” ๋‹ค์Œ์— ์–ด๋–ค ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‹œ๋„ํ•ด๋ณผ์ง€ ๊ฒฐ์ •ํ•ด์š”. ์ด๊ฒŒ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ํ•ต์‹ฌ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์ฃ ! ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ํš๋“ ํ•จ์ˆ˜๋“ค์€:

  • ํ™•๋ฅ ์  ๊ฐœ์„  (Probability of Improvement, PI)
  • ๊ธฐ๋Œ€ ๊ฐœ์„  (Expected Improvement, EI)
  • ์ƒํ•œ ์‹ ๋ขฐ ๊ตฌ๊ฐ„ (Upper Confidence Bound, UCB)

์ด ์ค‘์—์„œ ๊ฐ€์žฅ ๋งŽ์ด ์“ฐ์ด๋Š” ๊ฑด ๊ธฐ๋Œ€ ๊ฐœ์„ (EI)์ด์—์š”. EI๋Š” "ํƒ์ƒ‰(exploration)"๊ณผ "ํ™œ์šฉ(exploitation)" ์‚ฌ์ด์˜ ๊ท ํ˜•์„ ์ž˜ ์žก์•„์ฃผ๊ฑฐ๋“ ์š”.

์ž, ์ด์ œ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ๊ธฐ๋ณธ ๊ฐœ๋…์„ ์•Œ๊ฒŒ ๋˜์—ˆ์–ด์š”. ๊ทผ๋ฐ ์ด๊ฑธ ์–ด๋–ป๊ฒŒ ์‹ค์ œ๋กœ ์ ์šฉํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”? ๐Ÿค” ๊ฑฑ์ • ๋งˆ์„ธ์š”! ๋‹ค์Œ ์„น์…˜์—์„œ ์ž์„ธํžˆ ์•Œ์•„๋ณผ ๊ฑฐ์˜ˆ์š”. ready? Let's go! ๐Ÿš€

๐Ÿ› ๏ธ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” ์‹ค์ „ ์ ์šฉ๊ธฐ

์ž, ์ด์ œ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์‹ค์ œ๋กœ ์–ด๋–ป๊ฒŒ ์ ์šฉํ•˜๋Š”์ง€ ์•Œ์•„๋ณผ ์ฐจ๋ก€์˜ˆ์š”! ๐Ÿ˜Ž ์ด๋ก ์€ ์•Œ๊ฒ ๋Š”๋ฐ ์‹ค์ „์—์„œ ์–ด๋–ป๊ฒŒ ์“ฐ๋Š”์ง€ ๊ถ๊ธˆํ•˜์…จ์ฃ ? ๊ฑฑ์ • ๋งˆ์„ธ์š”, ์ง€๊ธˆ๋ถ€ํ„ฐ ์ƒ์„ธํ•˜๊ฒŒ ์„ค๋ช…ํ•ด๋“œ๋ฆด๊ฒŒ์š”!

Step 1: ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์„ ํƒํ•˜๊ธฐ ๐Ÿ“š

๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ์—ฌ๋Ÿฌ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๊ฐ€ ์žˆ์–ด์š”. ๊ฐ€์žฅ ์ธ๊ธฐ ์žˆ๋Š” ๊ฒƒ๋“ค์„ ์†Œ๊ฐœํ•ด๋“œ๋ฆด๊ฒŒ์š”:

  • Scikit-Optimize (skopt): ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฝ๊ณ , scikit-learn๊ณผ ์ž˜ ํ†ตํ•ฉ๋ผ์š”.
  • Hyperopt: ๋” ๋ณต์žกํ•œ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์–ด์š”.
  • Optuna: ์ตœ์‹  ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋กœ, ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฝ๊ณ  ๊ธฐ๋Šฅ์ด ํ’๋ถ€ํ•ด์š”.
  • GPyOpt: ๊ฐ€์šฐ์‹œ์•ˆ ํ”„๋กœ์„ธ์Šค์— ํŠนํ™”๋œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ˆ์š”.

์šฐ๋ฆฌ๋Š” Scikit-Optimize (skopt)๋ฅผ ์‚ฌ์šฉํ•  ๊ฑฐ์˜ˆ์š”. ์™œ๋ƒ๊ณ ์š”? ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฝ๊ณ , scikit-learn๊ณผ ์ž˜ ์–ด์šธ๋ฆฌ๊ฑฐ๋“ ์š”! ๐Ÿ‘

Step 2: ๋ชฉ์  ํ•จ์ˆ˜ ์ •์˜ํ•˜๊ธฐ ๐ŸŽฏ

๋จผ์ € ์ตœ์ ํ™”ํ•˜๊ณ  ์‹ถ์€ ๋ชฉ์  ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•ด์•ผ ํ•ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๋ถ„๋ฅ˜๊ธฐ์˜ ์„ฑ๋Šฅ์„ ์ตœ์ ํ™”ํ•œ๋‹ค๊ณ  ํ•ด๋ณผ๊นŒ์š”?


from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris

def objective(params):
    n_estimators, max_depth, min_samples_split = params
    clf = RandomForestClassifier(n_estimators=n_estimators,
                                 max_depth=max_depth,
                                 min_samples_split=min_samples_split,
                                 random_state=42)
    
    return -np.mean(cross_val_score(clf, X, y, cv=5, scoring="accuracy"))

# ๋ฐ์ดํ„ฐ ๋กœ๋“œ
X, y = load_iris(return_X_y=True)

์—ฌ๊ธฐ์„œ ๋ชฉ์  ํ•จ์ˆ˜๋Š” ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ์˜ ๊ต์ฐจ ๊ฒ€์ฆ ์ •ํ™•๋„๋ฅผ ๋ฐ˜ํ™˜ํ•ด์š”. ์Œ์ˆ˜๋ฅผ ๋ถ™์ธ ์ด์œ ๋Š” skopt๊ฐ€ ๊ธฐ๋ณธ์ ์œผ๋กœ ์ตœ์†Œํ™” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ๋•Œ๋ฌธ์ด์—์š”. ์šฐ๋ฆฌ๋Š” ์ •ํ™•๋„๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๊ณ  ์‹ถ์œผ๋‹ˆ๊นŒ ์Œ์ˆ˜๋ฅผ ๋ถ™์—ฌ์„œ ์ตœ์†Œํ™” ๋ฌธ์ œ๋กœ ๋ฐ”๊พผ ๊ฑฐ์ฃ ! ๋˜‘๋˜‘ํ•˜์ฃ ? ๐Ÿ˜‰

Step 3: ํƒ์ƒ‰ ๊ณต๊ฐ„ ์ •์˜ํ•˜๊ธฐ ๐ŸŒŒ

๋‹ค์Œ์œผ๋กœ, ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์˜ ํƒ์ƒ‰ ๋ฒ”์œ„๋ฅผ ์ •์˜ํ•ด์•ผ ํ•ด์š”. ์ด๊ฑธ "ํƒ์ƒ‰ ๊ณต๊ฐ„"์ด๋ผ๊ณ  ๋ถˆ๋Ÿฌ์š”.


from skopt.space import Integer, Real

space = [
    Integer(10, 100, name='n_estimators'),
    Integer(1, 20, name='max_depth'),
    Integer(2, 10, name='min_samples_split')
]

๊ฐ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•ด ์ตœ์†Œ๊ฐ’๊ณผ ์ตœ๋Œ€๊ฐ’์„ ์ง€์ •ํ–ˆ์–ด์š”. ์ด ๋ฒ”์œ„ ๋‚ด์—์„œ ์ตœ์ ์˜ ๊ฐ’์„ ์ฐพ๊ฒŒ ๋˜๋Š” ๊ฑฐ์ฃ !

Step 4: ์ตœ์ ํ™” ์‹คํ–‰ํ•˜๊ธฐ ๐Ÿš€

์ด์ œ ๋ชจ๋“  ์ค€๋น„๊ฐ€ ๋๋‚ฌ์–ด์š”! ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์‹คํ–‰ํ•ด๋ณผ๊นŒ์š”?


from skopt import gp_minimize

res = gp_minimize(objective, space, n_calls=50, random_state=42)

print("Best score: ", -res.fun)
print("Best parameters: ", res.x)

์—ฌ๊ธฐ์„œ n_calls๋Š” ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ชฉ์  ํ•จ์ˆ˜๋ฅผ ํ˜ธ์ถœํ•  ํšŸ์ˆ˜๋ฅผ ์ง€์ •ํ•ด์š”. ๋งŽ์ด ํ• ์ˆ˜๋ก ๋” ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹œ๊ฐ„๋„ ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๊ฒ ์ฃ ?

โš ๏ธ ์ฃผ์˜: ๋„ˆ๋ฌด ๋งŽ์€ n_calls๋ฅผ ์ง€์ •ํ•˜๋ฉด ๊ณผ์ ํ•ฉ(overfitting)์˜ ์œ„ํ—˜์ด ์žˆ์–ด์š”! ์ ์ ˆํ•œ ๊ท ํ˜•์„ ์ฐพ๋Š” ๊ฒŒ ์ค‘์š”ํ•ด์š”. ๋งˆ์น˜ ์š”๋ฆฌํ•  ๋•Œ ๊ฐ„์„ ๋งž์ถ”๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”! ๐Ÿง‚

Step 5: ๊ฒฐ๊ณผ ๋ถ„์„ํ•˜๊ธฐ ๐Ÿ“Š

์ตœ์ ํ™”๊ฐ€ ๋๋‚ฌ๋‹ค๋ฉด, ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•ด๋ณผ ์ฐจ๋ก€์˜ˆ์š”!


from skopt.plots import plot_convergence

plot_convergence(res)

์ด ๊ทธ๋ž˜ํ”„๋Š” ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ชฉ์  ํ•จ์ˆ˜ ๊ฐ’์ด ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”ํ–ˆ๋Š”์ง€ ๋ณด์—ฌ์ค˜์š”. ์ ์  ์ข‹์•„์ง€๋Š” ๊ฑธ ๋ณผ ์ˆ˜ ์žˆ๊ฒ ์ฃ ?

๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” ์ˆ˜๋ ด ๊ทธ๋ž˜ํ”„ ๋ฐ˜๋ณต ํšŸ์ˆ˜ ๋ชฉ์  ํ•จ์ˆ˜ ๊ฐ’ ์ตœ์ ์ 

์ด ๊ทธ๋ž˜ํ”„๋ฅผ ๋ณด๋ฉด, ์ดˆ๋ฐ˜์—๋Š” ๋ชฉ์  ํ•จ์ˆ˜ ๊ฐ’์ด ํฌ๊ฒŒ ๋ณ€๋™ํ•˜๋‹ค๊ฐ€ ์ ์  ์•ˆ์ •ํ™”๋˜๋Š” ๊ฑธ ๋ณผ ์ˆ˜ ์žˆ์–ด์š”. ๋งˆ์ง€๋ง‰ ์ง€์ ์ด ๋ฐ”๋กœ ์šฐ๋ฆฌ๊ฐ€ ์ฐพ์€ ์ตœ์ ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์กฐํ•ฉ์ด์—์š”! ๐Ÿ‘

Step 6: ์ตœ์ข… ๋ชจ๋ธ ํ•™์Šตํ•˜๊ธฐ ๐Ÿ†

์ด์ œ ์ฐพ์€ ์ตœ์ ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ์ตœ์ข… ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผœ๋ณผ๊นŒ์š”?


best_rf = RandomForestClassifier(n_estimators=res.x[0],
                                 max_depth=res.x[1],
                                 min_samples_split=res.x[2],
                                 random_state=42)
best_rf.fit(X, y)

์งœ์ž”! ๐ŸŽ‰ ์ด์ œ ์šฐ๋ฆฌ๋Š” ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ์ฐพ์€ ์ตœ๊ณ ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ํ•™์Šต๋œ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๋ชจ๋ธ์„ ๊ฐ–๊ฒŒ ๋˜์—ˆ์–ด์š”!

๐Ÿ’ก Pro Tip: ์‹ค์ œ ํ”„๋กœ์ ํŠธ์—์„œ๋Š” ์ด ๊ณผ์ •์„ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ฐ˜๋ณตํ•˜๊ฑฐ๋‚˜, ๋‹ค๋ฅธ ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•ด๋ณผ ์ˆ˜ ์žˆ์–ด์š”. ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ์—ฌ๋Ÿฌ ์žฌ๋Šฅ์„ ๋น„๊ตํ•˜๊ณ  ์„ ํƒํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”! ๋‹ค์–‘ํ•œ ์‹œ๋„๋ฅผ ํ†ตํ•ด ์ตœ๊ณ ์˜ ๋ชจ๋ธ์„ ์ฐพ์•„๋ณด์„ธ์š”. ๐Ÿ•ต๏ธโ€โ™€๏ธ

์ž, ์—ฌ๊ธฐ๊นŒ์ง€ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์‹ค์ œ๋กœ ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ดค์–ด์š”. ์–ด๋•Œ์š”? ์ƒ๊ฐ๋ณด๋‹ค ์–ด๋ ต์ง€ ์•Š์ฃ ? ๐Ÿ˜Š ์ด์ œ ์—ฌ๋Ÿฌ๋ถ„๋„ ์ด ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•ด ์—ฌ๋Ÿฌ๋ถ„์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์—…๊ทธ๋ ˆ์ด๋“œํ•  ์ˆ˜ ์žˆ์„ ๊ฑฐ์˜ˆ์š”!

๋‹ค์Œ ์„น์…˜์—์„œ๋Š” ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ ์ฃผ์˜ํ•ด์•ผ ํ•  ์ ๋“ค๊ณผ ๊ณ ๊ธ‰ ํŒ๋“ค์„ ์•Œ์•„๋ณผ ๊ฑฐ์˜ˆ์š”. ๊ธฐ๋Œ€๋˜์ง€ ์•Š๋‚˜์š”? ๐Ÿš€

๐Ÿง  ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ๊ณ ๊ธ‰ ํŒ๊ณผ ์ฃผ์˜์‚ฌํ•ญ

์ž, ์ด์ œ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ๊ธฐ๋ณธ์„ ๋งˆ์Šคํ„ฐํ•˜์…จ๋„ค์š”! ๐Ÿ‘ ํ•˜์ง€๋งŒ ์ž ๊น, ์•„์ง ๋์ด ์•„๋‹ˆ์—์š”. ๋” ํšจ๊ณผ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•œ ๊ณ ๊ธ‰ ํŒ๋“ค๊ณผ ์ฃผ์˜ํ•ด์•ผ ํ•  ์ ๋“ค์ด ์žˆ๊ฑฐ๋“ ์š”. ํ•จ๊ป˜ ์•Œ์•„๋ณผ๊นŒ์š”? ๐Ÿค“

1. ์ดˆ๊ธฐ ํฌ์ธํŠธ ์„ค์ •ํ•˜๊ธฐ ๐ŸŽฌ

๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋Š” ์ดˆ๊ธฐ ํฌ์ธํŠธ์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์–ด์š”. ๊ทธ๋ž˜์„œ ์ข‹์€ ์ดˆ๊ธฐ ํฌ์ธํŠธ๋ฅผ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์š”.


from skopt import gp_minimize

# ์ดˆ๊ธฐ ํฌ์ธํŠธ ์„ค์ •
initial_points = [
    [50, 10, 5],  # n_estimators, max_depth, min_samples_split
    [80, 15, 3],
    [30, 5, 8]
]

res = gp_minimize(objective, space, n_calls=50, x0=initial_points, random_state=42)

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์šฐ๋ฆฌ๊ฐ€ ์•Œ๊ณ  ์žˆ๋Š” ์ข‹์€ ์„ค์ •๋“ค๋กœ ์‹œ์ž‘ํ•  ์ˆ˜ ์žˆ์–ด์š”. ๋งˆ์น˜ ๋ณด๋ฌผ์ฐพ๊ธฐ๋ฅผ ํ•  ๋•Œ ์ข‹์€ ์ง€๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์ฃ ! ๐Ÿ—บ๏ธ

2. ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ํ™œ์šฉํ•˜๊ธฐ โšก

๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋Š” ์‹œ๊ฐ„์ด ์˜ค๋ž˜ ๊ฑธ๋ฆด ์ˆ˜ ์žˆ์–ด์š”. ํ•˜์ง€๋งŒ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์†๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค!


from skopt import gp_minimize
from joblib import Parallel, delayed

def parallel_objective(params):
    return Parallel(n_jobs=-1)(delayed(objective)(p) for p in params)

res = gp_minimize(parallel_objective, space, n_calls=50, n_jobs=-1, random_state=42)

n_jobs=-1์€ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  CPU ์ฝ”์–ด๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ๋œป์ด์—์š”. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋งˆ์น˜ ์—ฌ๋Ÿฌ ๋ช…์ด ๋™์‹œ์— ๋ณด๋ฌผ์„ ์ฐพ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋น ๋ฅด๊ฒŒ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ์–ด์š”! ๐Ÿƒโ€โ™‚๏ธ๐Ÿ’จ

3. ์กฐ๊ธฐ ์ข…๋ฃŒ (Early Stopping) ์„ค์ •ํ•˜๊ธฐ โฑ๏ธ

๋•Œ๋กœ๋Š” ์ตœ์ ํ™”๊ฐ€ ๋” ์ด์ƒ ๊ฐœ์„ ๋˜์ง€ ์•Š์„ ๋•Œ ์ผ์ฐ ๋ฉˆ์ถ”๋Š” ๊ฒŒ ์ข‹์„ ์ˆ˜ ์žˆ์–ด์š”. ์ด๋ฅผ "์กฐ๊ธฐ ์ข…๋ฃŒ"๋ผ๊ณ  ํ•ด์š”.


from skopt.callbacks import EarlyStopper

stopper = EarlyStopper(n_best=5, n_wait=10)
res = gp_minimize(objective, space, n_calls=100, callback=[stopper], random_state=42)

์ด ์„ค์ •์€ "์ตœ๊ทผ 10๋ฒˆ์˜ ์‹œ๋„ ๋™์•ˆ ์ƒ์œ„ 5๊ฐœ์˜ ๊ฒฐ๊ณผ๊ฐ€ ๊ฐœ์„ ๋˜์ง€ ์•Š์œผ๋ฉด ๋ฉˆ์ถฐ!"๋ผ๋Š” ๋œป์ด์—์š”. ๋งˆ์น˜ ๋“ฑ์‚ฐํ•  ๋•Œ ์ •์ƒ์— ๋„๋‹ฌํ–ˆ๋‹ค๊ณ  ํŒ๋‹จ๋˜๋ฉด ๋” ์ด์ƒ ์˜ฌ๋ผ๊ฐ€์ง€ ์•Š๋Š” ๊ฒƒ๊ณผ ๊ฐ™์ฃ ! โ›ฐ๏ธ

4. ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์ค‘์š”๋„ ํ™•์ธํ•˜๊ธฐ ๐Ÿ”

์–ด๋–ค ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ์ง€ ์•Œ๋ฉด ๋” ํšจ๊ณผ์ ์œผ๋กœ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ์–ด์š”.


from skopt.plots import plot_importance

plot_importance(res)
ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์ค‘์š”๋„ n_estimators max_depth min_samples_split ์ค‘์š”๋„

์ด ๊ทธ๋ž˜ํ”„๋Š” ๊ฐ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋ชจ๋ธ ์„ฑ๋Šฅ์— ์–ผ๋งˆ๋‚˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ๋ณด์—ฌ์ค˜์š”. ๋ง‰๋Œ€๊ฐ€ ๊ธธ์ˆ˜๋ก ๋” ์ค‘์š”ํ•œ ๊ฑฐ์˜ˆ์š”! ์ด๋ฅผ ํ†ตํ•ด ์–ด๋–ค ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์— ๋” ์ง‘์ค‘ํ•ด์•ผ ํ• ์ง€ ์•Œ ์ˆ˜ ์žˆ์ฃ . ๐Ÿ‘€

5. ํƒ์ƒ‰-ํ™œ์šฉ ๊ท ํ˜• ์กฐ์ ˆํ•˜๊ธฐ โš–๏ธ

๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์—์„œ๋Š” "ํƒ์ƒ‰(exploration)"๊ณผ "ํ™œ์šฉ(exploitation)" ์‚ฌ์ด์˜ ๊ท ํ˜•์ด ์ค‘์š”ํ•ด์š”. ์ด๋ฅผ ์กฐ์ ˆํ•˜๊ธฐ ์œ„ํ•ด ํš๋“ ํ•จ์ˆ˜(acquisition function)๋ฅผ ์„ ํƒํ•  ์ˆ˜ ์žˆ์–ด์š”.


from skopt import gp_minimize
from skopt.utils import use_named_args

@use_named_args(space)
def objective(**params):
    # ๋ชฉ์  ํ•จ์ˆ˜ ๊ตฌํ˜„

res = gp_minimize(objective, space, n_calls=50, acq_func='EI', random_state=42)

acq_func ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ 'EI' (Expected Improvement), 'PI' (Probability of Improvement), 'LCB' (Lower Confidence Bound) ๋“ฑ์„ ์„ ํƒํ•  ์ˆ˜ ์žˆ์–ด์š”. ๊ฐ๊ฐ ํŠน์„ฑ์ด ๋‹ค๋ฅด๋‹ˆ ์—ฌ๋Ÿฌ๋ถ„์˜ ๋ฌธ์ œ์— ๋งž๋Š” ๊ฑธ ๊ณจ๋ผ๋ณด์„ธ์š”! ๐ŸŽญ

๐Ÿ’ก Pro Tip: 'EI'๋Š” ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ์— ์ž˜ ์ž‘๋™ํ•˜์ง€๋งŒ, ํƒ์ƒ‰์„ ๋” ํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด 'PI'๋ฅผ, ๋น ๋ฅธ ์ˆ˜๋ ด์„ ์›ํ•œ๋‹ค๋ฉด 'LCB'๋ฅผ ์‹œ๋„ํ•ด๋ณด์„ธ์š”. ๋งˆ์น˜ ์š”๋ฆฌํ•  ๋•Œ ๋ถˆ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ์ƒํ™ฉ์— ๋งž๊ฒŒ ์กฐ์ ˆํ•˜๋Š” ๊ฒŒ ์ค‘์š”ํ•ด์š”! ๐Ÿ”ฅ

์ฃผ์˜์‚ฌํ•ญ โš ๏ธ

  1. ๊ณผ์ ํ•ฉ ์ฃผ์˜: ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋„ ๊ณผ์ ํ•ฉ๋  ์ˆ˜ ์žˆ์–ด์š”. ๊ฒ€์ฆ ์„ธํŠธ๋ฅผ ๋”ฐ๋กœ ๋‘๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์•„์š”.
  2. ๊ณ„์‚ฐ ๋น„์šฉ: ๋ชฉ์  ํ•จ์ˆ˜ ํ‰๊ฐ€๊ฐ€ ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๋ฉด ์ „์ฒด ์ตœ์ ํ™” ๊ณผ์ •๋„ ์˜ค๋ž˜ ๊ฑธ๋ ค์š”. ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด ๊ฐ„๋‹จํ•œ ํ”„๋ก์‹œ ๋ชฉ์  ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ด๋ณด์„ธ์š”.
  3. ์ฐจ์›์˜ ์ €์ฃผ: ๋„ˆ๋ฌด ๋งŽ์€ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋™์‹œ์— ์ตœ์ ํ™”ํ•˜๋ ค๊ณ  ํ•˜๋ฉด ํšจ๊ณผ๊ฐ€ ๋–จ์–ด์งˆ ์ˆ˜ ์žˆ์–ด์š”. ์ค‘์š”ํ•œ ๊ฒƒ๋“ค๋งŒ ์„ ํƒํ•˜์„ธ์š”.
  4. ๋กœ์ปฌ ์ตœ์ ํ™”: ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋„ ๋กœ์ปฌ ์ตœ์ ์ ์— ๋น ์งˆ ์ˆ˜ ์žˆ์–ด์š”. ์—ฌ๋Ÿฌ ๋ฒˆ ์‹คํ–‰ํ•ด๋ณด๋Š” ๊ฒƒ๋„ ์ข‹์€ ๋ฐฉ๋ฒ•์ด์—์š”.

์ž, ์ด์ œ ์—ฌ๋Ÿฌ๋ถ„์€ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ๊ณ ๊ธ‰ ์‚ฌ์šฉ๋ฒ•๊นŒ์ง€ ์•Œ๊ฒŒ ๋˜์—ˆ์–ด์š”! ๐ŸŽ“ ์ด ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•˜๋ฉด ์—ฌ๋Ÿฌ๋ถ„์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ํ•œ์ธต ๋” ์—…๊ทธ๋ ˆ์ด๋“œ๋  ๊ฑฐ์˜ˆ์š”. ๋งˆ์น˜ ์žฌ๋Šฅ๋„ท์—์„œ ์ƒˆ๋กœ์šด ์žฌ๋Šฅ์„ ๋ฐœ๊ฒฌํ•˜๊ณ  ํ‚ค์šฐ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ง์ด์ฃ ! ๐Ÿ˜‰

์ด์ œ ๋‚จ์€ ๊ฑด ์‹ค์ „์—์„œ ์ ์šฉํ•ด๋ณด๋Š” ๊ฑฐ์˜ˆ์š”. ์—ฌ๋Ÿฌ๋ถ„๋งŒ์˜ ํ”„๋กœ์ ํŠธ์— ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์ ์šฉํ•ด๋ณด์„ธ์š”. ๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๊ณต์œ ํ•ด์ฃผ์‹œ๋ฉด ์ข‹๊ฒ ์–ด์š”. ํ•จ๊ป˜ ์„ฑ์žฅํ•˜๋Š” ๊ฒŒ ๊ฐ€์žฅ ํฐ ์ฆ๊ฑฐ์›€์ด๋‹ˆ๊นŒ์š”! ๐ŸŒฑ

๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”์˜ ์„ธ๊ณ„์— ์˜ค์‹  ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค. ์ด์ œ ์—ฌ๋Ÿฌ๋ถ„์€ AI ๋งˆ๋ฒ•์‚ฌ๊ฐ€ ๋œ ๊ฑฐ์˜ˆ์š”! ๐Ÿง™โ€โ™‚๏ธโœจ ์•ž์œผ๋กœ์˜ ์—ฌ์ •์„ ์‘์›ํ• ๊ฒŒ์š”. ํ™”์ดํŒ…! ๐Ÿ’ช