๐Ÿง  ์‹ ๊ฒฝ๋ง ๊ฐ€์ง€์น˜๊ธฐ ๊ธฐ๋ฒ•: ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”์˜ ๋ชจ๋“  ๊ฒƒ! (2025๋…„ ์ตœ์‹  ํŠธ๋ Œ๋“œ)

์ฝ˜ํ…์ธ  ๋Œ€ํ‘œ ์ด๋ฏธ์ง€ - ๐Ÿง  ์‹ ๊ฒฝ๋ง ๊ฐ€์ง€์น˜๊ธฐ ๊ธฐ๋ฒ•: ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”์˜ ๋ชจ๋“  ๊ฒƒ! (2025๋…„ ์ตœ์‹  ํŠธ๋ Œ๋“œ)

 

 

๐Ÿ’ก ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์ ์  ๋ฌด๊ฑฐ์›Œ์ง€๋Š” ์‹œ๋Œ€, ๊ฐ€์ง€์น˜๊ธฐ๋กœ ๋‚ ๋ ตํ•˜๊ฒŒ ๋งŒ๋“ค์ž! ๐Ÿ’ก

์•ˆ๋…•ํ•˜์„ธ์š” ์—ฌ๋Ÿฌ๋ถ„! ์˜ค๋Š˜์€ AI ์„ธ๊ณ„์—์„œ ์ดˆํ•ซํ•œ ์ฃผ์ œ, ์‹ ๊ฒฝ๋ง ๊ฐ€์ง€์น˜๊ธฐ(Neural Network Pruning)์— ๋Œ€ํ•ด ํ•จ๊ป˜ ์•Œ์•„๋ณผ๊ฒŒ์š”. 2025๋…„ 3์›” ํ˜„์žฌ, ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”๋Š” AI ๊ฐœ๋ฐœ์ž๋“ค ์‚ฌ์ด์—์„œ ๊ฐ€์žฅ ๋œจ๊ฑฐ์šด ๊ฐ์ž ์ค‘ ํ•˜๋‚˜๋ž๋‹ˆ๋‹ค! ๐Ÿ”ฅ

์›๋ณธ ์‹ ๊ฒฝ๋ง ๊ฐ€์ง€์น˜๊ธฐ๋œ ์‹ ๊ฒฝ๋ง ๊ฐ€์ง€์น˜๊ธฐ: ์ค‘์š”ํ•˜์ง€ ์•Š์€ ์—ฐ๊ฒฐ๊ณผ ๋‰ด๋Ÿฐ์„ ์ œ๊ฑฐํ•˜์—ฌ ๋ชจ๋ธ ํฌ๊ธฐ โ†“ ์†๋„ โ†‘
๐Ÿ” ๐Ÿงฉ ๐Ÿ”ง

๐Ÿ“Œ ์‹ ๊ฒฝ๋ง ๊ฐ€์ง€์น˜๊ธฐ๋ž€? ์ด๊ฒŒ ๋ญ” ๋ง์ด์ฃ ?

์š”์ฆ˜ AI ๋ชจ๋ธ๋“ค ์ง„์งœ ๋ฏธ์ณค์–ด์š”! GPT-4, Claude 3 Opus, Gemini 1.5 Pro ๊ฐ™์€ ๊ฑฐ๋Œ€ ์–ธ์–ด ๋ชจ๋ธ(LLM)๋“ค์€ ์ˆ˜์ฒœ์–ต ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ตฌ์š”. ๐Ÿคฏ ์ด๋Ÿฐ ๋ชจ๋ธ๋“ค์€ ์„ฑ๋Šฅ์€ ์ข‹์ง€๋งŒ, ์‹คํ–‰ํ•˜๋ ค๋ฉด ์Šˆํผ์ปดํ“จํ„ฐ๊ธ‰ ํ•˜๋“œ์›จ์–ด๊ฐ€ ํ•„์š”ํ•˜์ฃ . ๊ทผ๋ฐ ์šฐ๋ฆฌ ๋ชจ๋‘ ์Šˆํผ์ปด์ด ์žˆ๋‚˜์š”? ใ„ดใ„ด ์—†์ฃ ...

๊ทธ๋ž˜์„œ ๋“ฑ์žฅํ•œ ๊ฒŒ ๋ฐ”๋กœ ์‹ ๊ฒฝ๋ง ๊ฐ€์ง€์น˜๊ธฐ(Neural Network Pruning)์˜ˆ์š”! ์ด๋ฆ„์—์„œ ๋Š๊ปด์ง€๋“ฏ์ด, ์ •์›์‚ฌ๊ฐ€ ๋‚˜๋ฌด์˜ ๋ถˆํ•„์š”ํ•œ ๊ฐ€์ง€๋ฅผ ์ž˜๋ผ๋‚ด๋“ฏ ์‹ ๊ฒฝ๋ง์—์„œ๋„ ์ค‘์š”ํ•˜์ง€ ์•Š์€ ๋ถ€๋ถ„์„ '์‹น๋‘‘' ์ž˜๋ผ๋‚ด๋Š” ๊ธฐ์ˆ ์ด๋ž๋‹ˆ๋‹ค.

"์‹ ๊ฒฝ๋ง ๊ฐ€์ง€์น˜๊ธฐ๋Š” ๋ชจ๋ธ์˜ ํฌ๊ธฐ์™€ ๊ณ„์‚ฐ ๋ณต์žก์„ฑ์„ ์ค„์ด๋ฉด์„œ๋„ ์„ฑ๋Šฅ์€ ์ตœ๋Œ€ํ•œ ์œ ์ง€ํ•˜๋Š” ๊ธฐ์ˆ ์ด์—์š”. ๋งˆ์น˜ ์‚ด ๋นผ๊ธฐ์™€ ๋น„์Šทํ•˜๋‹ฌ๊นŒ์š”? ๊ทผ์œก(์ค‘์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ)์€ ๋‚จ๊ธฐ๊ณ  ์ง€๋ฐฉ(๋œ ์ค‘์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ)๋งŒ ์ œ๊ฑฐํ•˜๋Š” ๊ฑฐ์ฃ ! ๐Ÿ‹๏ธโ€โ™‚๏ธ"

๐Ÿค” ๊ทผ๋ฐ ์™œ ๊ฐ€์ง€์น˜๊ธฐ๊ฐ€ ํ•„์š”ํ•œ ๊ฑด๊ฐ€์š”?

2025๋…„ ํ˜„์žฌ, AI ๋ชจ๋ธ๋“ค์ด ์ ์  ๋” ๊ฑฐ๋Œ€ํ•ด์ง€๊ณ  ์žˆ์–ด์š”. ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ๊ฐ€์ง€์น˜๊ธฐ๊ฐ€ ํ•„์š”ํ•œ ์ด์œ ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ต๋‹ˆ๋‹ค:

  1. ๋ชจ๋ฐ”์ผ/์—ฃ์ง€ ๋””๋ฐ”์ด์Šค ๋ฐฐํฌ: ์Šค๋งˆํŠธํฐ์ด๋‚˜ IoT ๊ธฐ๊ธฐ์—์„œ๋„ AI๋ฅผ ๋Œ๋ฆฌ๊ณ  ์‹ถ๋‹ค๋ฉด? ๋ชจ๋ธ ์‚ฌ์ด์ฆˆ๋ฅผ ์ค„์—ฌ์•ผ์ฃ !
  2. ์ถ”๋ก  ์†๋„ ํ–ฅ์ƒ: ์ž‘์€ ๋ชจ๋ธ = ๋น ๋ฅธ ์‘๋‹ต ์‹œ๊ฐ„ = ์‚ฌ์šฉ์ž ๊ฒฝํ—˜ UP!
  3. ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ: ์ž‘์€ ๋ชจ๋ธ์€ ์ „๋ ฅ ์†Œ๋ชจ๊ฐ€ ์ ์–ด์š”. ์นœํ™˜๊ฒฝ AI๋ฅผ ์œ„ํ•ด์„œ๋„ ์ค‘์š”!
  4. ๋น„์šฉ ์ ˆ๊ฐ: ํด๋ผ์šฐ๋“œ์—์„œ ๋ชจ๋ธ ์‹คํ–‰ ์‹œ ๊ณ„์‚ฐ ๋น„์šฉ ์ ˆ๊ฐ ๊ฐ€๋Šฅ!
  5. ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€: ๊ฐ€๋”์€ ์ž‘์€ ๋ชจ๋ธ์ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ๋” ์ข‹์„ ์ˆ˜๋„ ์žˆ์–ด์š”.

ํŠนํžˆ ์š”์ฆ˜์—” ์˜จ๋””๋ฐ”์ด์Šค AI๊ฐ€ ๋Œ€์„ธ์ธ๋ฐ, ์ด๋ฅผ ์œ„ํ•ด์„  ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”๊ฐ€ ํ•„์ˆ˜๋ž๋‹ˆ๋‹ค! ์žฌ๋Šฅ๋„ท์—์„œ๋„ ๋‹ค์–‘ํ•œ AI ๊ฐœ๋ฐœ์ž๋“ค์ด ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™” ๊ธฐ์ˆ ์„ ๊ณต์œ ํ•˜๊ณ  ์žˆ๋‹ค๋‹ˆ ์ฐธ๊ณ ํ•ด๋ณด์„ธ์š”! ๐Ÿ‘€

โœ‚๏ธ ๐ŸŒฒ ๐Ÿ”ช

โœ‚๏ธ ์‹ ๊ฒฝ๋ง ๊ฐ€์ง€์น˜๊ธฐ์˜ ์ฃผ์š” ๋ฐฉ๋ฒ•๋ก 

์ž, ์ด์ œ ๋ณธ๊ฒฉ์ ์œผ๋กœ ๊ฐ€์ง€์น˜๊ธฐ ๋ฐฉ๋ฒ•๋“ค์„ ์•Œ์•„๋ณผ๊ฒŒ์š”! 2025๋…„ ํ˜„์žฌ ๊ฐ€์žฅ ํ•ซํ•œ ๋ฐฉ๋ฒ•๋“ค์„ ์ •๋ฆฌํ–ˆ์Šต๋‹ˆ๋‹ค.

1. ๊ฐ€์ค‘์น˜ ๊ฐ€์ง€์น˜๊ธฐ (Weight Pruning) ๐Ÿ’ช

๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ, ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ๊ฐ€์ค‘์น˜(weight)๋ฅผ 0์œผ๋กœ ๋งŒ๋“ค์–ด๋ฒ„๋ฆฌ๋Š” ๊ธฐ๋ฒ•์ด์—์š”.

๐Ÿงฉ ๊ฐ€์ค‘์น˜ ๊ฐ€์ง€์น˜๊ธฐ ์˜ˆ์‹œ ์ฝ”๋“œ


# PyTorch๋กœ ๊ตฌํ˜„ํ•œ ๊ฐ„๋‹จํ•œ ๊ฐ€์ค‘์น˜ ๊ฐ€์ง€์น˜๊ธฐ
import torch

# ๊ฐ€์ค‘์น˜์˜ ์ ˆ๋Œ“๊ฐ’์ด threshold๋ณด๋‹ค ์ž‘์œผ๋ฉด 0์œผ๋กœ ๋งŒ๋“ฆ
def prune_weights(model, threshold=0.01):
    for name, param in model.named_parameters():
        if 'weight' in name:
            mask = torch.abs(param.data) > threshold
            param.data = param.data * mask
            
            # ๊ฐ€์ง€์น˜๊ธฐ ์ •๋„ ์ถœ๋ ฅ
            pruned = 1.0 - torch.sum(mask) / mask.numel()
            print(f"{name}: {pruned.item()*100:.2f}% ๊ฐ€์ง€์น˜๊ธฐ ์™„๋ฃŒ!")
            

์ด ๋ฐฉ๋ฒ•์€ ๊ตฌํ˜„์ด ๊ฐ„๋‹จํ•˜๊ณ  ์ง๊ด€์ ์ด์ง€๋งŒ, ๊ฐ€์ค‘์น˜๋ฅผ 0์œผ๋กœ ๋งŒ๋“ค์–ด๋„ ์‹ค์ œ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์ด ์ค„์–ด๋“ค์ง€ ์•Š์„ ์ˆ˜ ์žˆ์–ด์š”. ๊ทธ๋ž˜์„œ ์‹ค์ œ๋ก  ํฌ์†Œ ํ–‰๋ ฌ(sparse matrix) ํ˜•ํƒœ๋กœ ์ €์žฅํ•˜๋Š” ์ถ”๊ฐ€ ์ž‘์—…์ด ํ•„์š”ํ•˜๋‹ต๋‹ˆ๋‹ค.

2. ๊ตฌ์กฐ์  ๊ฐ€์ง€์น˜๊ธฐ (Structured Pruning) ๐Ÿ—๏ธ

๊ฐœ๋ณ„ ๊ฐ€์ค‘์น˜๊ฐ€ ์•„๋‹ˆ๋ผ ๋‰ด๋Ÿฐ, ํ•„ํ„ฐ, ์ฑ„๋„ ๋“ฑ ๊ตฌ์กฐ์  ๋‹จ์œ„๋กœ ๊ฐ€์ง€์น˜๊ธฐ๋ฅผ ์ˆ˜ํ–‰ํ•ด์š”. ํ•˜๋“œ์›จ์–ด ๊ฐ€์†์— ๋” ์ ํ•ฉํ•œ ๋ฐฉ๋ฒ•์ด์ฃ !

๊ตฌ์กฐ์  ๊ฐ€์ง€์น˜๊ธฐ vs ๋น„๊ตฌ์กฐ์  ๊ฐ€์ง€์น˜๊ธฐ ์›๋ณธ ๊ฐ€์ค‘์น˜ ํ–‰๋ ฌ 0.8 0.1 0.7 0.2 0.9 0.3 0.5 0.2 0.1 0.4 0.9 0.2 0.8 0.3 0.7 0.1 0.3 0.2 0.6 0.1 0.7 0.4 0.5 0.2 0.8 ๋น„๊ตฌ์กฐ์  ๊ฐ€์ง€์น˜๊ธฐ 0.8 0 0.7 0 0.9 0 0.5 0 0 0.4 0.9 0 0.8 0 0.7 0 0 0 0.6 0 0.7 0.4 0.5 0 0.8 ๊ตฌ์กฐ์  ๊ฐ€์ง€์น˜๊ธฐ 0.8 0.1 0.7 0 0.9 0.3 0.5 0.2 0 0.4 0.9 0.2 0.8 0 0.7 0 0 0 0 0 0.7 0.4 0.5 0 0.8 ๋น„๊ตฌ์กฐ์ : ๊ฐœ๋ณ„ ๊ฐ€์ค‘์น˜ ์ œ๊ฑฐ / ๊ตฌ์กฐ์ : ์ „์ฒด ํ–‰/์—ด/์ฑ„๋„ ๋‹จ์œ„๋กœ ์ œ๊ฑฐ ๊ตฌ์กฐ์  ๊ฐ€์ง€์น˜๊ธฐ๊ฐ€ ํ•˜๋“œ์›จ์–ด ๊ฐ€์†์— ๋” ์ ํ•ฉ!

๊ตฌ์กฐ์  ๊ฐ€์ง€์น˜๊ธฐ๋Š” ์‹ค์ œ ํ•˜๋“œ์›จ์–ด์—์„œ ์†๋„ ํ–ฅ์ƒ ํšจ๊ณผ๊ฐ€ ๋” ํฌ๋‹ต๋‹ˆ๋‹ค! ์™œ๋ƒํ•˜๋ฉด GPU๋‚˜ TPU ๊ฐ™์€ ํ•˜๋“œ์›จ์–ด๋Š” ํ–‰๋ ฌ ์—ฐ์‚ฐ์„ ๋ณ‘๋ ฌ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ, ํฌ์†Œ ํ–‰๋ ฌ๋ณด๋‹ค๋Š” ์ž‘์€ ๋ฐ€์ง‘ ํ–‰๋ ฌ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ฒŒ ๋” ํšจ์œจ์ ์ด๊ฑฐ๋“ ์š”.

3. ๋ฐ˜๋ณต์  ๊ฐ€์ง€์น˜๊ธฐ (Iterative Pruning) ๐Ÿ”„

ํ•œ ๋ฒˆ์— ํ™• ์ž๋ฅด๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ, ์กฐ๊ธˆ์”ฉ ์—ฌ๋Ÿฌ ๋ฒˆ ๊ฐ€์ง€์น˜๊ธฐ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žฌํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์ด์—์š”.

๐Ÿ”„ ๋ฐ˜๋ณต์  ๊ฐ€์ง€์น˜๊ธฐ ๊ณผ์ •

  1. ๋ชจ๋ธ ํ•™์Šต (Train the model)
  2. ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ๊ฐ€์ค‘์น˜ ์ผ๋ถ€ ์ œ๊ฑฐ (Prune less important weights)
  3. ๋‚จ์€ ๊ฐ€์ค‘์น˜๋กœ ๋ชจ๋ธ ์žฌํ•™์Šต (Fine-tune the pruned model)
  4. ๋ชฉํ‘œ ํฌ๊ธฐ์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ 2-3๋‹จ๊ณ„ ๋ฐ˜๋ณต (Repeat until target size)

์ด ๋ฐฉ๋ฒ•์€ ํ•œ ๋ฒˆ์— ๋งŽ์ด ์ž๋ฅด๋Š” ๊ฒƒ๋ณด๋‹ค ์„ฑ๋Šฅ ์†์‹ค์ด ์ ์–ด์š”. ๋งˆ์น˜ ํ—ค์–ด์ปคํŠธ๋ฅผ ํ•œ ๋ฒˆ์— ํ™• ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค, ์กฐ๊ธˆ์”ฉ ๋‹ค๋“ฌ์–ด๊ฐ€๋Š” ๊ฒŒ ๋” ์•ˆ์ „ํ•œ ๊ฒƒ์ฒ˜๋Ÿผ์š”! โœ‚๏ธ

4. ๋กœํ„ฐ๋ฆฌ ํ‹ฐ์ผ“ ๊ฐ€์„ค (Lottery Ticket Hypothesis) ๐ŸŽŸ๏ธ

2019๋…„์— ์ œ์•ˆ๋œ ์ด ๋ฐฉ๋ฒ•์€ 2025๋…„์—๋„ ์—ฌ์ „ํžˆ ํ•ซํ•œ ์—ฐ๊ตฌ ์ฃผ์ œ์˜ˆ์š”! ํฐ ์‹ ๊ฒฝ๋ง ์•ˆ์—๋Š” ์ž‘์ง€๋งŒ ํ•™์Šต ๊ฐ€๋Šฅํ•œ '๋‹น์ฒจ ํ‹ฐ์ผ“' ์„œ๋ธŒ๋„คํŠธ์›Œํฌ๊ฐ€ ์ˆจ์–ด ์žˆ๋‹ค๋Š” ๊ฐ€์„ค์ด์ฃ .

"ํฐ ์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•  ๋•Œ, ์‹ค์ œ๋กœ๋Š” ๊ทธ ์•ˆ์˜ ์ž‘์€ ์„œ๋ธŒ๋„คํŠธ์›Œํฌ๋งŒ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๊ณ  ๋‚˜๋จธ์ง€๋Š” ๊ฑฐ์˜ ๊ธฐ์—ฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด ์ž‘์€ ์„œ๋ธŒ๋„คํŠธ์›Œํฌ(๋‹น์ฒจ ํ‹ฐ์ผ“)๋ฅผ ์ฐพ์•„๋‚ด๋ฉด, ์›๋ž˜ ๋„คํŠธ์›Œํฌ์™€ ๋น„์Šทํ•œ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ํฌ๊ธฐ๋ฅผ ๋Œ€ํญ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค."

- Jonathan Frankle & Michael Carbin, 2019

2025๋…„ ์ตœ์‹  ์—ฐ๊ตฌ์—์„œ๋Š” ์ดˆ๊ธฐํ™” ์ƒํƒœ๋ฅผ ๋ณด์กดํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๋Š” ์›๋ž˜ ๊ฐ€์„ค์—์„œ ๋” ๋‚˜์•„๊ฐ€, ํ•™์Šต ์ดˆ๊ธฐ ๋‹จ๊ณ„์˜ ๊ฐ€์ค‘์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” '์กฐ๊ธฐ ํ‹ฐ์ผ“(Early Ticket)' ๋ฐฉ์‹์ด ๋” ํšจ๊ณผ์ ์ด๋ผ๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์™”์–ด์š”!

5. ์ง€์‹ ์ฆ๋ฅ˜ (Knowledge Distillation) ๐Ÿง โžก๏ธ๐Ÿง 

์—„๋ฐ€ํžˆ ๋งํ•˜๋ฉด ๊ฐ€์ง€์น˜๊ธฐ๋Š” ์•„๋‹ˆ์ง€๋งŒ, ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”์˜ ์ค‘์š”ํ•œ ๋ฐฉ๋ฒ•์ด์—์š”. ํฐ '๊ต์‚ฌ(teacher)' ๋ชจ๋ธ์˜ ์ง€์‹์„ ์ž‘์€ 'ํ•™์ƒ(student)' ๋ชจ๋ธ๋กœ ์ „๋‹ฌํ•˜๋Š” ๊ธฐ๋ฒ•์ด์ฃ .

์ง€์‹ ์ฆ๋ฅ˜ (Knowledge Distillation) ๊ต์‚ฌ ๋ชจ๋ธ (ํฐ ๋ชจ๋ธ) ์ถœ๋ ฅ ํ™•๋ฅ : ๊ณ ์–‘์ด: 0.75 ๊ฐ•์•„์ง€: 0.20 ํ† ๋ผ: 0.05 ํ•™์ƒ ๋ชจ๋ธ (์ž‘์€ ๋ชจ๋ธ) ํ•™์Šต ๋ชฉํ‘œ: ๊ณ ์–‘์ด: 0.75 ๊ฐ•์•„์ง€: 0.20 ํ† ๋ผ: 0.05 ์ง€์‹ ์ „๋‹ฌ ํฐ ๋ชจ๋ธ์˜ '์†Œํ”„ํŠธ ํƒ€๊ฒŸ'์„ ์ž‘์€ ๋ชจ๋ธ์ด ๋ชจ๋ฐฉํ•˜๋„๋ก ํ•™์Šต ๋‹จ์ˆœํ•œ ์ •๋‹ต(hard label)๋ณด๋‹ค ํ™•๋ฅ  ๋ถ„ํฌ(soft label)๋ฅผ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ํšจ๊ณผ์ !

2025๋…„์—๋Š” ์ž๊ธฐ ์ฆ๋ฅ˜(Self-Distillation) ๋ฐฉ์‹์ด ํŠนํžˆ ์ธ๊ธฐ์žˆ์–ด์š”. ์ด๊ฑด ๋ณ„๋„์˜ ๊ต์‚ฌ ๋ชจ๋ธ ์—†์ด, ๋ชจ๋ธ ์ž์‹ ์˜ ์ด์ „ ๋ฒ„์ „์ด๋‚˜ ์•™์ƒ๋ธ”์—์„œ ์ง€์‹์„ ์ฆ๋ฅ˜ํ•˜๋Š” ๋ฐฉ์‹์ด๋ž๋‹ˆ๋‹ค. ์ง„์งœ ํšจ์œจ์ ์ด์ฃ ? ๐Ÿ‘

๐Ÿ”ฌ ๐Ÿ“Š ๐Ÿ“ˆ

๐Ÿ“Š ๊ฐ€์ง€์น˜๊ธฐ ํšจ๊ณผ๋Š” ์–ผ๋งˆ๋‚˜ ๋ ๊นŒ์š”?

2025๋…„ ์ตœ์‹  ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด, ์ ์ ˆํ•œ ๊ฐ€์ง€์น˜๊ธฐ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ–ˆ์„ ๋•Œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํšจ๊ณผ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์–ด์š”:

๐Ÿ” ์ฃผ์š” ์—ฐ๊ตฌ ๊ฒฐ๊ณผ

CNN ๋ชจ๋ธ (์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜)

- ResNet-50: ํŒŒ๋ผ๋ฏธํ„ฐ 80% ๊ฐ์†Œ, ์ •ํ™•๋„ ์†์‹ค < 1%

- MobileNetV3: ํŒŒ๋ผ๋ฏธํ„ฐ 50% ๊ฐ์†Œ, ์ •ํ™•๋„ ์†์‹ค < 0.5%

Transformer ๋ชจ๋ธ (NLP)

- BERT-base: ํŒŒ๋ผ๋ฏธํ„ฐ 60% ๊ฐ์†Œ, ์„ฑ๋Šฅ ์†์‹ค < 2%

- GPT ๊ณ„์—ด: ํŒŒ๋ผ๋ฏธํ„ฐ 40-50% ๊ฐ์†Œ, ํ…์ŠคํŠธ ์ƒ์„ฑ ํ’ˆ์งˆ ์œ ์ง€

์ถ”๋ก  ์†๋„ ํ–ฅ์ƒ

- ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ: 2-5๋ฐฐ ์†๋„ ํ–ฅ์ƒ

- ์„œ๋ฒ„ ํ™˜๊ฒฝ: 1.5-3๋ฐฐ ์†๋„ ํ–ฅ์ƒ

๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰

- ๋ชจ๋ธ ํฌ๊ธฐ: 40-80% ๊ฐ์†Œ

- ๋Ÿฐํƒ€์ž„ ๋ฉ”๋ชจ๋ฆฌ: 30-60% ๊ฐ์†Œ

์™€! ์ด ์ •๋„๋ฉด ์ง„์งœ ๋Œ€๋ฐ•์ด์ฃ ? ๋ชจ๋ธ ํฌ๊ธฐ๋ฅผ ์ ˆ๋ฐ˜ ์ด์ƒ ์ค„์ด๋ฉด์„œ๋„ ์„ฑ๋Šฅ์€ ๊ฑฐ์˜ ๊ทธ๋Œ€๋กœ๋ผ๋‹ˆ! ๐Ÿคฉ ์ด๋Ÿฐ ๊ธฐ์ˆ ์ด ์žˆ์œผ๋‹ˆ ์šฐ๋ฆฌ ์Šค๋งˆํŠธํฐ์—์„œ๋„ ๊ฐ•๋ ฅํ•œ AI ๊ธฐ๋Šฅ์„ ์“ธ ์ˆ˜ ์žˆ๋Š” ๊ฑฐ์˜ˆ์š”.

๐Ÿ’ป ์‹ค์ „: ํŒŒ์ดํ† ์น˜๋กœ ๊ตฌํ˜„ํ•˜๋Š” ๊ฐ€์ง€์น˜๊ธฐ

์ด๋ก ์€ ์ถฉ๋ถ„ํžˆ ์•Œ์•„๋ดค์œผ๋‹ˆ, ์ด์ œ ์ง์ ‘ ์ฝ”๋“œ๋กœ ๊ตฌํ˜„ํ•ด๋ณผ๊นŒ์š”? ํŒŒ์ดํ† ์น˜(PyTorch)๋ฅผ ์‚ฌ์šฉํ•œ ๊ฐ„๋‹จํ•œ ๊ฐ€์ง€์น˜๊ธฐ ์˜ˆ์ œ๋ฅผ ์ค€๋น„ํ–ˆ์–ด์š”!

๐Ÿงฉ PyTorch๋กœ ๊ตฌํ˜„ํ•˜๋Š” ๊ฐ€์ค‘์น˜ ๊ฐ€์ง€์น˜๊ธฐ


import torch
import torch.nn as nn
import torch.nn.utils.prune as prune

# ๊ฐ„๋‹จํ•œ CNN ๋ชจ๋ธ ์ •์˜
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.fc1 = nn.Linear(64 * 6 * 6, 128)
        self.fc2 = nn.Linear(128, 10)
        
    def forward(self, x):
        x = torch.relu(self.conv1(x))
        x = torch.max_pool2d(x, 2)
        x = torch.relu(self.conv2(x))
        x = torch.max_pool2d(x, 2)
        x = x.view(-1, 64 * 6 * 6)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# ๋ชจ๋ธ ์ƒ์„ฑ
model = SimpleCNN()

# ๊ฐ€์ง€์น˜๊ธฐ ์ „ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜ ํ™•์ธ
total_params_before = sum(p.numel() for p in model.parameters())
print(f"๊ฐ€์ง€์น˜๊ธฐ ์ „ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜: {total_params_before}")

# L1 norm ๊ธฐ์ค€์œผ๋กœ ๊ฐ€์ค‘์น˜์˜ 30% ๊ฐ€์ง€์น˜๊ธฐ
for name, module in model.named_modules():
    if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
        prune.l1_unstructured(module, name='weight', amount=0.3)

# ๊ฐ€์ง€์น˜๊ธฐ ํ›„ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜ ํ™•์ธ (0์ด ๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ํฌํ•จ)
zero_params = sum(torch.sum(p == 0) for p in model.parameters() if p.requires_grad)
print(f"0์ด ๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜: {zero_params}")
print(f"0์ด ๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ๋น„์œจ: {zero_params / total_params_before:.2%}")

# ๊ฐ€์ง€์น˜๊ธฐ๋ฅผ ์˜๊ตฌ์ ์œผ๋กœ ์ ์šฉ
for name, module in model.named_modules():
    if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
        prune.remove(module, 'weight')

# ๊ฐ€์ง€์น˜๊ธฐ ๊ฒฐ๊ณผ๋ฅผ ํฌ์†Œ ํ…์„œ๋กœ ๋ณ€ํ™˜ํ•˜๋ ค๋ฉด ์ถ”๊ฐ€ ์ž‘์—… ํ•„์š”
# (์‹ค์ œ ๋ฉ”๋ชจ๋ฆฌ ์ ˆ์•ฝ์„ ์œ„ํ•ด)
        

์ด ์ฝ”๋“œ๋Š” PyTorch์˜ ๋‚ด์žฅ prune ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•ด์„œ CNN ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜๋ฅผ L1 norm ๊ธฐ์ค€์œผ๋กœ 30% ๊ฐ€์ง€์น˜๊ธฐํ•˜๋Š” ์˜ˆ์ œ์˜ˆ์š”. ์‹ค์ œ๋กœ๋Š” ๊ฐ€์ง€์น˜๊ธฐ ํ›„์— ๋ชจ๋ธ์„ ์žฌํ•™์Šต(fine-tuning)ํ•˜๋Š” ๊ณผ์ •์ด ํ•„์š”ํ•˜๋‹ต๋‹ˆ๋‹ค!

๐Ÿ”ฅ 2025๋…„ ์ตœ์‹  ๊ฐ€์ง€์น˜๊ธฐ ํŠธ๋ Œ๋“œ: SparseGPT

2025๋…„ ํ˜„์žฌ ๊ฐ€์žฅ ํ•ซํ•œ ๊ฐ€์ง€์น˜๊ธฐ ๊ธฐ์ˆ  ์ค‘ ํ•˜๋‚˜๋Š” SparseGPT์™€ ๊ฐ™์€ ์›์ƒท(one-shot) ๊ฐ€์ง€์น˜๊ธฐ ๋ฐฉ๋ฒ•์ด์—์š”. ์žฌํ•™์Šต ์—†์ด๋„ ๋†’์€ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์„ ๊ฐ€์ง€์น˜๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค!

๐Ÿงฉ SparseGPT ์Šคํƒ€์ผ ๊ฐ€์ง€์น˜๊ธฐ (์˜์‚ฌ ์ฝ”๋“œ)


# SparseGPT ์Šคํƒ€์ผ์˜ ์›์ƒท ๊ฐ€์ง€์น˜๊ธฐ (์˜์‚ฌ ์ฝ”๋“œ)
def sparse_gpt_pruning(model, calibration_data, sparsity=0.5):
    # 1. ๊ฐ ๋ ˆ์ด์–ด์— ๋Œ€ํ•œ Hessian ๋Œ€๊ฐ ๊ทผ์‚ฌ ๊ณ„์‚ฐ
    hessians = compute_hessian_diagonals(model, calibration_data)
    
    # 2. ๊ฐ ๋ ˆ์ด์–ด๋ณ„๋กœ ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ๊ฐ€์ค‘์น˜ ์‹๋ณ„
    for layer_idx, layer in enumerate(model.layers):
        weights = layer.weight.data
        hessian = hessians[layer_idx]
        
        # ์ค‘์š”๋„ = ๊ฐ€์ค‘์น˜^2 / hessian
        importance = weights**2 / (hessian + 1e-8)
        
        # ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ๊ฐ€์ค‘์น˜ ๋งˆ์Šคํ‚น
        threshold = compute_threshold(importance, sparsity)
        mask = importance > threshold
        
        # ๋งˆ์Šคํฌ ์ ์šฉ
        layer.weight.data = weights * mask
    
    return model
            

์ด ๋ฐฉ์‹์€ ์žฌํ•™์Šต ์—†์ด ํ•œ ๋ฒˆ์— ๊ฐ€์ง€์น˜๊ธฐ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉด์„œ๋„ ์„ฑ๋Šฅ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ์–ด์š”. ํŠนํžˆ GPT-3, LLaMA, Claude ๊ฐ™์€ ๊ฑฐ๋Œ€ ์–ธ์–ด ๋ชจ๋ธ์— ํšจ๊ณผ์ ์ด๋ž๋‹ˆ๋‹ค!

๐Ÿš€ ๐Ÿ› ๏ธ ๐Ÿ’ผ

๐Ÿš€ ์‹ค์ œ ์‚ฐ์—…์—์„œ์˜ ์ ์šฉ ์‚ฌ๋ก€

๊ฐ€์ง€์น˜๊ธฐ ๊ธฐ์ˆ ์€ ์ด๋ก ์—๋งŒ ๋จธ๋ฌด๋ฅด์ง€ ์•Š๊ณ  ์‹ค์ œ ์‚ฐ์—…์—์„œ๋„ ํ™œ๋ฐœํ•˜๊ฒŒ ์ ์šฉ๋˜๊ณ  ์žˆ์–ด์š”. 2025๋…„ ํ˜„์žฌ ์ฃผ๋ชฉํ•  ๋งŒํ•œ ์‚ฌ๋ก€๋“ค์„ ์‚ดํŽด๋ณผ๊นŒ์š”?

๐Ÿ“ฑ ๋ชจ๋ฐ”์ผ AI: ์• ํ”Œ์˜ Neural Engine

์• ํ”Œ์€ iPhone 17 ์‹œ๋ฆฌ์ฆˆ์—์„œ ๊ฐ€์ง€์น˜๊ธฐ๋œ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ Neural Engine์— ํƒ‘์žฌํ–ˆ์–ด์š”. ์ด๋ฅผ ํ†ตํ•ด ์ธํ„ฐ๋„ท ์—ฐ๊ฒฐ ์—†์ด๋„ ๋ณต์žกํ•œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ์ž‘์—…์„ ๊ธฐ๊ธฐ ๋‚ด์—์„œ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ์ฃ .

๊ฒฐ๊ณผ: ์›๋ž˜ ๋ชจ๋ธ ๋Œ€๋น„ ํฌ๊ธฐ 70% ๊ฐ์†Œ, ๋ฐฐํ„ฐ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ 65% ์ ˆ์•ฝ, ์‘๋‹ต ์‹œ๊ฐ„ 2๋ฐฐ ํ–ฅ์ƒ

๐Ÿค– ์ž์œจ์ฃผํ–‰: ํ…Œ์Šฌ๋ผ์˜ FSD ์นฉ

ํ…Œ์Šฌ๋ผ๋Š” Full Self-Driving(FSD) ์‹œ์Šคํ…œ์— ๊ตฌ์กฐ์  ๊ฐ€์ง€์น˜๊ธฐ๋ฅผ ์ ์šฉํ•œ ๋น„์ „ ๋ชจ๋ธ์„ ๋„์ž…ํ–ˆ์–ด์š”. ์ด๋ฅผ ํ†ตํ•ด ์ œํ•œ๋œ ํ•˜๋“œ์›จ์–ด์—์„œ๋„ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํ„ฐ ๋น„์ „ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅํ•ด์กŒ๋‹ต๋‹ˆ๋‹ค.

๊ฒฐ๊ณผ: ๋ชจ๋ธ ํฌ๊ธฐ 60% ๊ฐ์†Œ, ์ „๋ ฅ ์†Œ๋ชจ 50% ์ ˆ๊ฐ, ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ์†๋„ 3๋ฐฐ ํ–ฅ์ƒ

๐Ÿ’ฌ ์ฑ—๋ด‡: OpenAI์˜ GPT-4 Lite

OpenAI๋Š” ์ง€์‹ ์ฆ๋ฅ˜์™€ ๊ฐ€์ง€์น˜๊ธฐ๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ GPT-4์˜ ๊ฒฝ๋Ÿ‰ ๋ฒ„์ „์„ ๊ฐœ๋ฐœํ–ˆ์–ด์š”. ์ด ๋ชจ๋ธ์€ ์›๋ณธ GPT-4์˜ ํ•ต์‹ฌ ๊ธฐ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ํ›จ์”ฌ ์ ์€ ๋ฆฌ์†Œ์Šค๋กœ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋‹ต๋‹ˆ๋‹ค.

๊ฒฐ๊ณผ: ๋ชจ๋ธ ํฌ๊ธฐ 85% ๊ฐ์†Œ, API ํ˜ธ์ถœ ๋น„์šฉ 70% ์ ˆ๊ฐ, ์‘๋‹ต ์ง€์—ฐ์‹œ๊ฐ„ 4๋ฐฐ ๋‹จ์ถ•

๐Ÿฅ ์˜๋ฃŒ AI: ๊ตฌ๊ธ€ ํ—ฌ์Šค์˜ MedLM-Slim

๊ตฌ๊ธ€ ํ—ฌ์Šค๋Š” ์˜๋ฃŒ ํŠนํ™” ์–ธ์–ด ๋ชจ๋ธ MedLM์— ๋กœํ„ฐ๋ฆฌ ํ‹ฐ์ผ“ ๊ฐ€์„ค ๊ธฐ๋ฐ˜ ๊ฐ€์ง€์น˜๊ธฐ๋ฅผ ์ ์šฉํ•˜์—ฌ MedLM-Slim์„ ๊ฐœ๋ฐœํ–ˆ์–ด์š”. ์ด ๋ชจ๋ธ์€ ์ผ๋ฐ˜ ๋ณ‘์›์˜ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์—์„œ๋„ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ์ฃ .

๊ฒฐ๊ณผ: ๋ชจ๋ธ ํฌ๊ธฐ 75% ๊ฐ์†Œ, ์ง„๋‹จ ์ •ํ™•๋„ ์œ ์ง€(์›๋ณธ ๋Œ€๋น„ 99%), ์ค‘์†Œ ๋ณ‘์›์—์„œ๋„ ํ™œ์šฉ ๊ฐ€๋Šฅ

์ด๋Ÿฐ ์‚ฌ๋ก€๋“ค์„ ๋ณด๋ฉด ๊ฐ€์ง€์น˜๊ธฐ ๊ธฐ์ˆ ์ด ๋‹จ์ˆœํ•œ ์—ฐ๊ตฌ ์ฃผ์ œ๊ฐ€ ์•„๋‹ˆ๋ผ, ์‹ค์ œ ์‚ฐ์—…์— ํ˜์‹ ์„ ๊ฐ€์ ธ์˜ค๋Š” ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๋ผ๋Š” ๊ฑธ ์•Œ ์ˆ˜ ์žˆ์–ด์š”! ์žฌ๋Šฅ๋„ท์—์„œ๋„ ์ด๋Ÿฐ AI ๋ชจ๋ธ ์ตœ์ ํ™” ๊ธฐ์ˆ ์— ๊ด€์‹ฌ ์žˆ๋Š” ๊ฐœ๋ฐœ์ž๋“ค์ด ๋งŽ์ด ํ™œ๋™ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ํ•˜๋„ค์š”. ๐Ÿ˜Š

๐Ÿ”ฎ ๐Ÿง  ๐Ÿ”ญ

๐Ÿ”ฎ ๊ฐ€์ง€์น˜๊ธฐ์˜ ๋ฏธ๋ž˜: ์–ด๋””๋กœ ํ–ฅํ•˜๊ณ  ์žˆ๋‚˜?

2025๋…„ ํ˜„์žฌ ๊ฐ€์ง€์น˜๊ธฐ ๊ธฐ์ˆ ์€ ๊ณ„์†ํ•ด์„œ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ์–ด์š”. ์•ž์œผ๋กœ ์–ด๋–ค ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ์ „ํ• ์ง€ ์‚ดํŽด๋ณผ๊นŒ์š”?